

Vector Statistical Library
Notes

Intel® Math Kernel Library

Version 6.0

July 2004

Vector Statistical Library Notes

2

This document as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in these Notes is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use
in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any
time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel

Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II

Xeon, Pentium III Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2002-2004, Intel Corporation.

Vector Statistical Library Notes

3

Table of Contents

About This Library..………………… 5
About This Document ..………………… 5
Introduction ..………………… 5
Randomness and Scientific Experiment………………… 6
Random Numbers..………………… 6
Figures of Merit for Random Number Generators………………… 7

Uniform Probability Distribution and Basic Pseudo- and Quasi-Random
 Number Generators ...………………… 7
Figures of Merit for General (Non-Uniform) Distribution Generators …… 9

VSL Structure ..………………… 10
Why Vector Type Generators?..………………….10
Basic Generators ..………………….10
Random Streams and RNGs in Parallel Computation………………….14

Initializing Basic Generator...………………….14
Creating and Initializing Random Streams………………….15
Creating Random Stream Copy and Copying Stream State …………. 16
Independent Streams. Leapfrogging and Block-Splitting ……………...16

Generating Methods for Random Numbers of Non-Uniform Distribution.. 18
Inverse Transformation ..………………….18
Acceptance/Rejection...………………….20
Mixture of Distributions...………………….20
Special Properties ..………………… 21

Example of VSL Use ...………………… 22
Testing of Basic Random Number Generators………………… 23

Interpreting Test Results ...………………… 25
One-Level (Threshold) Testing...................................………………… 25
Two-Level Testing ..………………… 25

BRNG Tests Description ...………………… 25
3D Spheres Test ..………………… 26
Birthday Spacing Test ..………………… 26
Bitstream Test ..………………… 28
Rank of 31x31 Binary Matrices Test………………… 29
Rank of 32x32 Binary Matrices Test………………… 30
Rank of 6x8 Binary Matrices Test………………… 32
Count-the-1’s Test (stream of bits)………………… 33
Count-the-1’s Test (stream of specific bytes)………………… 35
Craps Test..………………… 36
Parking Lot Test ...………………… 37
2D Self-Avoiding Random Walk Test………………… 38
Template Test ..………………… 39

Basic Random Generator Properties and Testing Results ……………… 40

Vector Statistical Library Notes

4

MCG31m1 ..………………… 40
R250...………………… 41
MRG32k3a ...………………… 43
MCG59 ...………………… 46
WH ...………………… 48
SOBOL ...………………… 50
NIEDERREITER...………………… 51

Testing of Distribution Random Number Generators...........………………… 52
Interpreting Test Results ...………………… 53
Description of Distribution Generator Tests………………… 53

Confidence Test ...………………… 53
Distribution Moments Test..………………… 53
Chi-Squared Goodness-of-Fit Test………………… 54
Performance...………………… 55

Continuous Distribution Functions………………… 56
Uniform...………………… 56
Gaussian ..………………… 56
GaussianMV...………………… 58
Exponential...………………… 59
Laplace...………………… 59
Weibull..………………… 59
Cauchy ...………………… 59
Rayleigh ...………………… 60
Lognormal ..………………… 60
Gumbel...………………… 60

Discrete Distribution Functions………………… 60
Uniform...………………… 60
UniformBits...………………… 61
Bernoulli ...………………… 62
Geometric...………………… 63
Binomial..………………… 63
Hypergeometric ..………………… 63
Poisson...………………… 64
PoissonV ..………………… 64
NegBinomial ...………………… 64

Bibliography ...………………… 65

Vector Statistical Library Notes

5

About This Library
Vector Statistical Library (VSL), also called Vector Generators of Statistical Distributions, is
designed for the purpose of pseudorandom and quasi-random vector generation. VSL is an integral
part of Intel® Math Kernel Library (Intel® MKL).

VSL provides a number of generator subroutines implementing commonly used continuous and
discrete distributions, all of which are based on the highly optimized Basic Random Number
Generators (BRNGs) and VML, the library of vector transcendental functions, to help improve
their performance.

About This Document
This document includes a brief conceptual overview of random numbers generation problems, the
product and its capabilities, with focus on interpretation of results and the related generator figures
of merit as well as task-oriented, procedural, and reference information. In contrast to Intel MKL
Reference Manual, VSL Notes substantially expand on the concept of random number generation
and its application as well as on the related notions and issues. The document provides extensive
comparative analysis of the library generators and describes the basic tests applied. Apart from the
VSL distribution generators and service subroutines, dealt with in the Intel MKL Reference
Manual, the VSL Notes also describe testing of distribution generators.

Those interested in general issues related to random number generators, their quality and
applications in computer simulation should refer to Randomness and Scientific Experiment,
Random Numbers, and Figures of Merit for Random Number Generators sections, which briefly
cover the relevant matters and provide references for further studies.

VSL Structure section covers the concept underlying VSL, the library structure and potential for
functionality enhancement. VSL is a library of high-performance random number generators. The
section describes the factors that optimize the VSL generators for Intel® processors. Special
attention is given to VSL ease of use and other advantages in parallel programming.

Testing of Basic Random Number Generators and Testing of Distribution Random Number
Generators describe a number of tests for the VSL generators of various probability distributions.
See http://www.intel.com/software/products/mkl for latest test results.

Introduction
This document does not purport to cover the fundamentals of mathematical statistics and
probability theory, nor those of the theory of numbers and statistical simulation. Books and
articles listed in the Bibliography section mostly cover these issues. What you will find below is a
brief overview of issues pertaining to random number generation, interpretation of the results and
the related notion of quality random number generation. To some extent, it is an attempt to justify
‘the fall’ of many people engaged in solving problems of randomness simulation, that is, the fall
John von Neumann meant, when he wrote: "Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin". (Still more and more researchers in a
variety of scientific fields are getting themselves involved into this kind of simulation depravity, as
simulation is becoming more and more valuable in various scientific disciplines). Computer
simulation has become a new and de-facto commonly recognized approach to scientific research
along with conventional experimentation. The latter harshly restricts a mathematical model that is

http://www.intel.com/software/products/mkl/docs/manuals.htm
http://www.intel.com/software/products/mkl/docs/manuals.htm
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

6

supposed to be as sophisticated as the available conventional research methods permit. As for
сomputer simulation, with ever-growing computing power the degree of mathematical model
complexity has come to be more dependable exclusively on our own understanding of phenomena
we try to model. This is arguably the key factor in ensuring the great success that computer
simulation has achieved of recent.

Randomness and Scientific Experiment
A precise definition of what the word ‘random’ means can hardly be given, even considering the
fact that everyday life provides a variety of examples of ‘randomness’. Randomness is closely
related to unpredictability of observation results and impossibility to predict them with sufficient
accuracy. The nature of randomness is based on lack of exhaustive information about the
phenomenon under observation. As soon as we learn the origin of that phenomenon, we no longer
consider it accidental or random. On the other hand, a random phenomenon, whose origin has been
revealed, loses nothing of its random character. We may characterize randomness as a type of
relation stipulated by conditions that are inessential, superfluous, and extraneous to this particular
phenomenon. Thus, knowledge is incomplete by definition as it is impossible to allow for all sorts
of immaterial relations.

Since our knowledge is incomplete (and it is something that can hardly be helped), the observation
results may prove impossible to predict with great accuracy. For instance, the initial state of the
objects under observation may change imperceptibly for our instruments, but these small changes
may cause significant alterations in the final results. Sophisticated nature of the observed
phenomenon may make accurate computation impossible in practice, if not in theory. Finally, even
minor uncontrollable disturbing factors may cause serious deviations from hypothetically “true
value”.

Nevertheless, with all likelihood of ‘irregularities’ and ‘deviations’, observational or experimental
results still reveal a certain typical regularity, named statistical stability. Various forms of
statistical stability are formulated as specific rules that mathematical statistics calls laws of large
numbers. In fact, it is this stability that the mathematical theory underlying mathematical model of
random phenomena is based upon. This theory is well known as the theory of probability.

Random Numbers
A set of distinctive features characterizes experimental observations. Many of such features are of
purely quantitative nature (results of measurements, calculations, and the like) but some of them
are mainly qualitative (for example, color of the object, occurrence or non-occurrence, and so on).
In the latter case results may also be presented as quantitative if some appropriate conventions
have been developed and applied (this may prove to be a rather tricky task to accomplish, though).
Thus, even when the result is a particular quality feature it can always be expressed by a certain
number, which, if the result is a random phenomenon, is called a random number.

Numerical methods consider random numbers not only as data from experimental
observations. After emergence of computers an imitation of a huge amount of random numbers is
of great interest in various computational areas as well [11].

For historical reasons methods that utilize random numbers to perform a simulation of phenomena
are called Monte Carlo methods. Monte Carlo became a tool to perform the most complex
simulations in natural and social sciences, financial analysis, physics of turbulence, rarefied gas
and fluid simulations, physics of high energies, chemical kinetics and combustion, radiation
transport problems, and photorealistic rendering.

Vector Statistical Library Notes

7

Monte Carlo methods are intended for various numerical problems such as solving ordinary
stochastic differential equations, ordinary differential equations with random entries, boundary
value problems for partial differential equations, integral equations, and evaluation of high-
dimensional integrals including path-dependent integrals. Monte Carlo methods include also
random variables and order statistics simulation, stochastic processes as well as random samplings
and permutations.

Due to various reasons [3] random number generation based on completely deterministic
algorithms has become most common. It is obvious, however, that numbers obtained in a strictly
deterministic way can not be considered truly random as they only imitate randomness and are, in
fact, pseudo-random. Ideally, pseudo-random numbers imitate ‘truly’ random ones so well that
without knowing the method of pseudo-random number generation and judging only by the output
sequence, it is impossible to distinguish it within a reasonable time from a ‘truly’ random sequence
with more than 50% probability [12]. The output sequence of most pseudorandom number
generators is easily predictable. This is acceptable because a number of practical applications do
not require strict unpredictability. However, there are certain applications for which most now
existing pseudorandom generators are useless and at times simply dangerous. Among them, for
example, are applications dealing with geometrical behavior of large random vectors. Most of
presently existing generators should never be used for cryptographic purposes.

Pseudorandom number generators imitate finite sequences of independent identically distributed
(i.i.d.) random numbers. However, some numerical methods do not really require independence
between random numbers in a sequence. For such methods (a numerical integration and
optimization, for example) the most important is to fill some space with numbers as close to a
given distribution as possible to the prejudice of independence. Such sequences do not look
random at all. For historical reasons they are called quasi-random (or low discrepancy) sequences,
respective generators are called quasi-random number generators, and Monte Carlo methods
dealing with quasi-random numbers are called Quasi-Monte Carlo methods.

Hereinafter, the term ‘random number generator’, or RNG, refers to both pseudo- and quasi-
random number generators, unless we want to emphasize the fact that a generator produces
precisely a pseudo- or quasi-random sequence.

Figures of Merit for Random Number Generators

Uniform Probability Distribution and Basic Pseudo- and Quasi-
Random Number Generators
When considering a great variety of probability distributions, special emphasis should be laid upon
a uniform distribution over a certain set U of large cardinality. Firstly, such a distribution is most
convenient for analysis. And secondly, a random number generator of uniform distribution can
always serve as a basis for an RNG of any other distribution type. That is why we use the term
basic generators in reference to pseudorandom number generators of uniform distribution.

So the observational output sequence of a basic generator should ideally possess the same
properties as a sequence of independent variates evenly distributed over a set U, that is, it should
be able to pass various statistical tests for uniformity and independence. A pseudorandom number
generator, however, is unable to pass all sorts of statistical tests, as it is an a priori fact that the
output sequence of such generator is anything but random. In other words, a fairly powerful
statistical test can always be created for any individual basic RNG, which the said generator will
definitely fail. The situation may not look so desperate, if we consider the time required to detect
‘non-randomness’ in the generator. It makes sense to consider only those statistical tests that work

Vector Statistical Library Notes

8

within a ‘reasonable’ period of time. What exactly time period is ‘reasonable’? No direct answer
is possible here, as it depends on the sphere of generator application. For example, ‘reasonable’
time in cryptography may be measured in years of testing conducted on a powerful cluster, while it
may be significantly shorter for most of other applications.

Note: As of present, VSL contains general-purpose random number generators that are not
intended for cryptography applications!

Cryptographic RNGs are too slow for other fields; most of applications there benefit from simpler
(and faster) generators: linear congruential, multiple recursive, feedback-shift-register, add-with-
carry, etc.

To summarize, it should be noted that checking the quality of basic RNGs requires a ‘reasonable’
set, or battery, of statistical tests. Ideally, such tests depend for their choice on types of problems
the generator is intended to solve. A suitable test battery for general-purpose RNGs libraries is
fairly hard to choose, as the tests it should include are supposed to be versatile and sufficient for
many simulation tasks. DIEHARD Battery of Tests by G. Marsaglia [16] is an example of a good
set of empirical tests for basic generators. Still a specific application type may require a more
complete generator testing.

While duly recognizing the importance and usefulness of empirical testing, we should emphasize
the significance of theoretical methods for estimating the quality of basic generators. Theoretical
research serves as the basis for better understanding of generator’s properties: its period length,
lattice structure, discrepancy, equidistribution, etc. Theoretic evaluation is the first stage in
rejecting admittedly bad generators. Empirical tests should be applied only to make sure the
remaining generators are of acceptable quality. What makes the empirical testing just as important
is the fact that most of results obtained with the help of theoretical testing refer to a basic generator
used over the entire period, while in practice only a small fraction of the period is (and should be!)
engaged. Good behavior of k-dimensional random number vectors over the entire period provides
us with greater confidence (yet not with a proof) that similarly good statistical behavior will be
observed over a smaller portion of the period [12].

Period of a basic generator is a most important feature that characterizes its quality. For example,
one of the VSL BRNGs — multiplicative congruential generator MCG31m1 — has a period
length of about 231, while its efficiency amounts to about four processor cycles per one real
number, using Intel® Itanium® 2 processor. Therefore, with the processor frequency of 1GHz, the
entire period will be covered within slightly more than 2 seconds. Taking into consideration that
good statistical behavior of the generator is observed only over a fraction of its period (B.D. Ripley
[19] recommends to take no more than a square root of the period length) we may assert that such
period length is unacceptable. Such generators, however, still may be useful in certain Monte Carlo
applications (mostly due to the speed and small volume of memory engaged to keep the generator
state as well as efficient methods available for generation of random subsequences), when a
relatively little quantity of random numbers should be used. For example, while estimating a
global solution to an integral equation through Monte Carlo method, the same random numbers
should be used for different parameters [17]. Somehow or other, modern computational capacities
require BRNGs of at least 260 period length. All the other VSL BRNGs meet these requirements.

Pseudorandom number generators are commonly recursive integer sequences in modular
arithmetic, for example:

)(mod...2211 mxaxaxax knknnn −−− +++=

Theoretical research aims at selection of such values for parameters k, ai, m that provide for good
quality properties of the output sequence in terms of period length, lattice structure, discrepancy,

Vector Statistical Library Notes

9

equidistribution, etc. In particular, if m is a prime number, and with proper coefficients ai selected,
a period length of order mk may be obtained. Nevertheless, m is often taken as 2p (p >1) due to
efficient modulo m reduction. Some authors do not recommend using m in the form of a power of
2 (see, for example, D. Knuth [11], P. L’Ecuyer [12]) as the lower bits of the generated random
numbers prove to be non-random on the whole. For most of Monte Carlo applications, however,
this is immaterial. Moreover, even if m is a prime number, great care should also be taken when
selecting random bits in the output sequence.

For the same reasons quasi-random number generators filling some hypercube as evenly as
possible are called in VSL as Basic Random Number Generators as well. Quasi-random sequences
filling space according to a non-uniform distribution can be generated by transforming a sequence
produced by a basic quasi-random number generator. It is obvious that in most cases tests designed
for pseudorandom number generators cannot be used for quasi-random number generators. Special
batteries of tests should be designed for basic quasi-random number generators.

Figures of Merit for General (Non-Uniform) Distribution Generators

First and foremost, it should be noted that a general distribution generator greatly depends on the
quality of the underlying BRNG. Several basic approaches may be singled out to test general
distribution generators.

Random number distributions can be described with a number of measures: probability moments,
central and absolute moments, quantiles, mode, scattering, skewness, and excess (kurtosis)
coefficients, etc. All the ordinary sample characteristics converge in probability to the
corresponding measures of distribution when the sample size tends to infinity [6]. Commonly, the
characteristics based on the distribution moments are asymptotically normal with large sample
sizes. Some classes of sample characteristics that are not based on sampling moments are also
asymptotically normal, while others have quite different asymptotic behavior. Somehow or other,
when limit probability distribution is known, it is possible to build a statistical test to check
whether a particular sample characteristic agrees with a corresponding measure of the distribution.

Of greatest practical value for simulation purposes are sample mean and variance that are main
properties of the distribution bias and scattering. All the VSL random number generators undergo
testing for agreement between distribution sampling moments (mean and variance) and theoretical
values calculated for various sample sizes and distribution parameters.

Another class of valuable tests aims to check how well the sample distribution function agrees with
the theoretical one. The most important tests among them are chi-square Pearson goodness-of-fit
test (for discrete and continuous distributions) and Kolmogorov-Smirnov goodness-of-fit test (for
continuous distributions). Every VSL distribution is tested with chi-square Pearson test over
various sample sizes and distribution parameters.

It may be useful to transform the sequence that is being tested into one of the distributions, for
example, into a uniform, normal, or multidimensional normal distribution. Then the transformed
sequence is tested using a set of statistical tests that are specific for the distribution to which the
sequence was transformed.

Tests that are based on simulation are in fact real Monte Carlo applications. Their choice is quite
optional and should be made in accordance with the generator’s field of application, the only
requirement being an opportunity to verify the results obtained against the theoretical value.
A good example of such test application, which is used in checking the VSL generators for quality,
is the self-avoiding random walk [21].

Vector Statistical Library Notes

10

VSL Structure
The VSL library of the current Intel MKL version contains a set of generators to create general
probability distributions, most commonly used in simulations, such as uniform, normal (Gaussian),
exponential, Poisson, etc. Non-uniform distributions are generated using various transformation
techniques applied to the output of a basic (either pseudo-random or quasi-random) RNG.

To generate random numbers of a given probability distribution, you have an option of choosing
one of the available VSL basic generators or of registering your own basic random number
generator. To enhance their performance, all the VSL BRNGs are highly optimized for various
architectures of Intel processors. Besides, VSL provides a number of different techniques for
transforming uniformly distributed random numbers into a sequence of required distribution.

All the random number generators that are implemented in VSL are of vector type. Unlike scalar
type generators, for example, a standard rand() function, when the function output is a successive
random number, vector generators produce a vector of n successive random numbers of a given
distribution with given parameters.

VSL is a thread-safe library convenient for parallel computing with a great variety of
configurations of parallel systems. A random stream is a basic notion in VSL. Mechanism of
streams provides simultaneous generation of several random number sequences produced by one
or more basic generators, as well as splitting of the original sequence into several subsequences by
the leapfrog and block-split methods. Several random streams are particularly useful not only in
parallel applications but in sequential programs as well.

Why Vector Type Generators?
Due to architectural features of modern computers vector type library subroutines often perform
much more efficiently than scalar type routines. In other words, the overhead expenses are often
comparable with the total time required for computations. Certainly, there are subroutines where
overhead expenses are negligible in comparison with the total time required for computation.
However, this is not usually the case with highly optimized RNGs. To reduce overhead expenses,
all VSL random number generator subroutines are of vector type. User is free to call a vector
random number generator subroutine to generate just one random number, however, such use is
hardly efficient.

On the one hand, vector type random number generators sometimes require more careful
programming. A reward in this case is a substantial speedup in overall application performance.
On the other hand, VSL provides a number of services to make vector programming as natural as
possible. See Independent Streams. Leapfrogging and Block-Splitting section for further
discussion.

Disregarding possible programming issues, the vector type interface is quite natural for Monte
Carlo methods because Monte Carlo requires a lot of random numbers rather than just one.

Basic Generators
As indicated above, the basic generators may serve to obtain random numbers of various statistical
distributions. Non-uniform distribution generators strongly depend on the quality of the underlying
basic generators. Besides, as we have already mentioned, at present there is no such basic
generator that would be fully adequate for any application. Many of the current generators are

Vector Statistical Library Notes

11

useless and simply dangerous for a certain category of tasks. In a number of applications quality
requirements for RNGs prevail over other requirements, such as speed, memory use, etc. In some
other tasks quality requirements are not that stringent and speed criterion or efficiency in
generating random number subsequences are of higher importance. Some applications use random
numbers as real ones, while others treat random numbers as a bit stream. It should be noted that,
even if a basic generator has trouble providing true randomness for lower bits, it is not necessarily
inadequate for applications using variates as real numbers.

All of the above arguments testify to the fact that a library of general-purpose RNGs should
provide a set of several different basic generators, both pseudo- and quasi-random. Besides, such a
library should envisage an option of including new basic generators, which you may find
preferable.

One of the important issues for computational experimentation is verification of the results.
Typically, a researcher is unable to verify the output since the solution is simply unknown.
Without going into details of verification for sophisticated simulation systems, we would state that
any verification process involves testing of each structural element of the system. A random
number generator, being one of such structural elements, may bring about inadequate results.
Therefore, to obtain more reliable results of the experiment, many authors recommend that several
different basic generators should be used in a series of computational experiments. This is yet
another argument favoring inclusion of several BRNGs of different types in a library.

VSL provides the following basic pseudorandom number generators:

• MCG31m1. A 31-bit multiplicative congruential generator.

12 ,1132489760

)(mod

31

1

−==

=
= −

ma

mxu
maxx

nn

nn

• R250. A generalized feedback shift register generator.

,232
250103

nn

nnn

xu

xxx

=

⊕= −−

where ⊕ means exclusive or operation on 32-bit integer values.

• MRG32k3a. A combined multiple recursive generator with two components of order 3.

228532 ,1370589 ,0 ,527612

2092 ,810728 ,1403580 ,0

)(mod
)(mod

)(mod

32
2232221

32
1131211

1

1

2323222121

1313212111

−=−===

−=−===

=
−=

++=
++=

−−−

−−−

maaa

maaa

mzu
myxz

myayayay
mxaxaxax

nn

nnn

nnnn

nnnn

• MCG59. A 59-bit multiplicative congruential generator.

5913

1

2 ,13

)(mod

==

=
= −

ma

mxu
maxx

nn

nn

Vector Statistical Library Notes

12

• WH. A set of 273 Wichmann-Hill combined multiplicative congruential generators.
(j = 1, 2, … , 273)

() 1mod
)(mod

)(mod
)(mod

)(mod

,4,3,2,1

,41,4

,31,3

,21,2

,11,1

jnjnjnjnn

jnjn

jnjn

jnjn

jnjn

mwmzmymxu
mwaw

mzaz
myay
mxax

+++=

=

=

=

=

−

−

−

−

Note: The variables xn, yn, zn, wn in the above equations define a successive member of integer
subsequence set by recursion. The variable un is the generator real output normalized to the
interval (0, 1).

In addition, two basic quasi-random number generators are available in VSL.

• SOBOL (with Antonov-Saleev [1] modification). A 32-bit Gray code-based generator
producing low-discrepancy sequences for dimensions 401 ≤≤ s .

cnn vxx ⊕= −1

322nn xu =

Note: The value c is the rightmost zero bit in n-1; nx is an s-dimensional vector of 32-bit values.

The s-dimensional vectors (calculated during random stream initialization) 32,1, =iiv are

called direction numbers. The vector nu is the generator output normalized to the unit hypercube
s)1,0(.

• NIEDERREITER (with Antonov-Saleev [1] modification). A 32-bit Gray code-based
generator producing low-discrepancy sequences for dimensions 3181 ≤≤ s .

cnn vxx ⊕= −1

322nn xu =

Below we discuss each basic generator in more detail and provide references for further reading.

MCG31m1
32-bit linear congruential generators, which also include MCG31m1 [14], are still used as default
RNGs in various systems mostly due to simplicity of implementation, speed of operation, and
compatibility with earlier versions of the systems. However, their period lengths do not meet the
requirements for modern basic random number generators. Nevertheless, MCG31m1 possesses
good statistical properties and may be used to advantage in generating random numbers of various
distribution types for relatively small samplings.

R250
R250 is a generalized feedback shift register generator. Feedback shift register generators possess
extensive theoretical footing and were first considered as RNGs for cryptographic and
communications applications. Generator R250 proposed in [10] is fast and simple in

Vector Statistical Library Notes

13

implementation. It is common in the field of physics. However, the generator fails a number of
tests, a 2D self-avoiding random walk [21] being an example.

MRG32k3a
A combined generator MRG32k3a [13] meets the requirements for modern RNGs: good
multidimensional uniformity, fairly large period, etc. Besides, being optimized for various Intel®
architectures, this generator rivals the other VSL BRNGs in speed.

MCG59
A multiplicative congruential generator MCG59 is one of the two basic generators implemented in
NAG Numerical Libraries [18] (see www.nag.co.uk). Since the module of this generator is not
prime, its period length is not 259, but just 257, if the seed is an odd number. A drawback of such
generators is well-known (for example, see [11], [12]): the lower bits of the output sequence are
not random, therefore breaking numbers down into their bit patterns and using individual bits may
cause trouble. Besides, block-splitting of the sequence over the entire period into 2d similar blocks
results in full coincidence of such blocks in d lower bits (see, for instance, [11], [12]).

WH
WH is a set of 273 different basic generators. It is the second basic generator in NAG libraries.
The constants ai,j are in the range 112 to 127 and the constants mi,j are prime numbers in the range
16718909 to 16776971, which are close to 224. These constants have been chosen so that they give
good results with the spectral test, see [11] and [15]. The period of each Wichmann–Hill generator
would be at least 292, if it were not for common factors between (m1,j–1), (m2,j–1), (m3,j–1), and
(m4,j–1). However, each generator should still have a period of at least 280. Further discussion of
the properties of these generators is given in [15], which shows that the generated pseudo-random
sequences are essentially independent of one another according to the spectral test.

SOBOL
Bratley and Fox [4] provide an implementation of the Sobol quasi-random number generator. VSL
implementation allows generating Sobol’s low-discrepancy sequences of length up to 232. The
dimension of quasi-random vectors can vary from 1 to 40 inclusive.

NIEDERREITER
According to the results of Bratley, Fox, and Niederreiter [5] Niederreiter’s sequences have the
best known theoretical asymptotic properties. VSL implementation allows generating
Niederreiter’s low-discrepancy sequences of length up to 232. The dimension of quasi-random
vectors can vary from 1 to 318 inclusive.

VSL provides an option of registering one or more new basic generators that you see as preferable
or more reliable. Use them in the same way as the BRNGs available with VSL. The registration
procedure makes it easy to include a variety of user-designed generators.

Each of the VSL basic generators consists of 4 subroutines:

 Stream Initialization Subroutine. See the section Random Streams and RNGs in
Parallel Computation for details.

 Integer Output Generation Subroutine. Every generated integral value (within certain
bounds) may be considered a random bit vector. For details on randomness of individual
bits or bit groups, see Basic Random Generator Properties and Testing Results.

http://www.nag.co.uk

Vector Statistical Library Notes

14

 Single Precision Floating-Point Random Number Vector Generation Subroutine.
The subroutine generates a real arithmetic vector of uniform distribution over the
interval [a, b].

 Double Precision Floating-Point Random Number Vector Generation Subroutine.
The subroutine generates a real arithmetic vector of uniform distribution over the
interval [a, b].

Random Streams and RNGs in Parallel Computation

Initializing Basic Generator
To obtain a random number sequence from a given basic generator, you should assign initial, or
seed values. The assigning procedure is called the generator initialization (the C language function
analogous with the initialization function is srand(seed)) in stdlib.h). Different types of basic
generators require a different number of initial values. For example, the seed for MCG31m1 is an
integral number within the range from 1 to 231–2, the initial values for MRG32k3a are a set of two
triples of 32-bit digits, and the seed for MCG59 is an integer within the range from 1 to 259–1. In
contrast to the pseudorandom number generators, quasi-random generators require the dimension
parameter on input. Thus, each BRNG, including those registered by the user, requires an
individual initialization function. However, requiring individual initialization functions within the
library interface would limit the versatility of the routines.

The basic concept of VSL is to provide an interface with universal mechanism for generator
initialization, while encapsulating details of the initialization process from the user. (Nevertheless,
the initialization process is clearly documented in VSL Notes for each library basic generator). In
line with this concept, VSL offers two subroutines to initialize any basic generator (see the
functions of random stream creation and initialization in Random Streams section). These
initialization functions can also be used to initialize user-supplied functions. One of the
subroutines initializes a given basic generator using one 32-bit initial value, which is called the
seed by tradition. If the generator requires more than one 32-bit seed, VSL initializes the remaining
initial values on the basis of the original seed. Thus, generator R250, which requires 250 initial 32-
bit values, is initialized using one 32-bit seed by the method described in [10]. The second
subroutine is a generalization of the first one. It initializes a basic generator by passing an array of
n 32-bit initial values. If the number of the initial values n is insufficient to initialize a given basic
generator, the missing initial values are initialized by default values. On the contrary, if the number
of the initial values n is excessive, the redundant values are ignored. For details on initialization
procedure see Basic Random Generator Properties and Testing Results.

When calling initialization functions you may ignore acceptability of the passed initial values for a
given basic generator. If the passed seeds are unacceptable, the initialization procedure replaces
them with those acceptable for a given type of BRNG. See Basic Random Generator Properties
and Testing Results for details on acceptable initial values.

If you add a new basic generator to VSL, you should implement an appropriate initialization
function, which supports the above mechanism of initial values passing, and, if required, apply the
leapfrog and block-splitting techniques.

Vector Statistical Library Notes

15

Creating and Initializing Random Streams
VSL assumes that at any moment during the program operation you may simultaneously use
several random number subsequences generated by one or more basic generators. Consider the
following scenarios:

 The simulation system has several independent structural blocks of random number
generation (for example, one block generates random numbers of normal distribution,
another generates uniformly distributed numbers, etc.) Each of the blocks should
generate an independent random number sequence, that is, each block is assigned an
individual stream that generates random numbers of a given distribution.

 It is necessary to study correlation properties of the simulation output with different
distribution parameters. In this case it looks natural to assign an individual random
number stream (subsequence) to each set of the parameters. For example, see [17].

 Each parallel process (computational node) requires an independent random number
subsequence of a given distribution, that is, a random number stream.

A random stream means a certain abstract source of random numbers. By linking such a stream to
a specific basic generator and assigning specific initial values we predetermine the random number
sequence produced by this particular stream. In VSL a universal stream state descriptor identifies
every random number stream (in C language this is just a pointer to the structure). The descriptor
specifies the dynamically allocated memory space that contains information on the respective basic
generator and its current state as well as some additional data necessary for the leapfrog and/or
skip-ahead method. VSL has two stream creation and initialization functions:

vslNewStream(stream, brng, seed)

vslNewStreamEx(stream, brng, n, params)

Each of these subroutines allocates memory space to store information on the basic generator
brng, its current state, etc., and then calls the initialization function of the basic generator brng
that fills the fields of the generator current state with relevant initial values. The initial values are
defined either by one 32-bit value seed (for vslNewStream) or an array of n 32-bit initial values
params (for vslNewStreamEx). The output of vslNewStream and vslNewStreamEx is the pointer
to stream, that is, the stream state descriptor.

You can create any number of streams through multiple calls of vslNewStream or
vslNewStreamEx functions. For example, you can generate several thread-safe streams that are
linked to the same basic generator.

The generated streams are further identified by their stream state descriptors. Although a random
number stream is a source of random numbers produced by a basic generator, that is, a generator of
uniform distribution, you can generate random numbers of non-uniform distribution using streams.
To do this, the stream state descriptor is passed to the transformation function that generates
random numbers of a given distribution. Each function uses the stream state descriptor to produce
random numbers of a uniform distribution, which are further transformed into sequences of the
required distribution. See the section Generating Methods for Random Numbers of Non-Uniform
Distribution for details.

When a given random number stream is no longer needed, delete it by calling vslDeleteStream
function:

Vector Statistical Library Notes

16

vslDeleteStream(stream)

This function frees the memory space related to the stream state descriptor stream. After that, the
descriptor can no longer be used.

Creating Random Stream Copy and Copying Stream State
VSL provides an option of producing an exact copy of a generated stream by calling
vslCopyStream function:

vslCopyStream(newstream, srcstream)

A new stream newstream is created with parameters (stream descriptive information) that are
exactly the same as those of the source stream srcstream at the moment of calling
vslCopyStream. The stream state of newstream will be exactly the same as that of srcstream,
and both the streams will generate random numbers using the same basic generator.

Another service function vslCopyStreamState copies the current state of the stream:

vslCopyStreamState(deststream, srcstream)

The streams srcstream and deststream are assumed to have been created by one of the above
methods, both of the streams being related to the same basic generator. The function
vslCopyStreamState copies the information about the current stream state from srcstream into
deststream. Other stream-related information remains unchanged.

Independent Streams. Leapfrogging and Block-Splitting
One of the basic requirements for random number streams is their mutual independence and lack
of intercorrelation. Even if you want random number samplings to be correlated, such correlation
should be controllable.

The independence of streams is provided through a number of methods. We discuss three of them,
all supported by VSL, in more detail.

• For each of the streams you may use the same type of generators (for example, linear
congruential generators), but choose their parameters in such a way as to produce
independent output random number sequences. Wichmann-Hill generator is a good example
here. It has 273 parameter sets, which ensure that the resulting subsequences are independent
according to the spectral test. (See [11] for the spectral test details). Thus, the WH generator
is capable of creating up to 273 independent random number streams.

• Split the original sequence into k non-overlapping blocks, where k is the number of
independent streams. Each of the streams generates random numbers only from the
corresponding block. This method is known as block-splitting or skipping-ahead.

• Split the original sequence into k disjoint subsequences, where k is the number of
independent streams, in such a way that the first stream would generate the random numbers
x1, xk+1, x2k+1, x3k+1, …, the second stream would generate the random numbers x2, xk+2,

Vector Statistical Library Notes

17

x2k+2, x3k+2, …, and, finally, the kth stream would generate the random numbers xk, x2k,
x3k, … This method is known as leapfrogging. Note, however, that multidimensional
uniformity properties of each subsequence deteriorate seriously as k grows. The method may
be recommended if k is fairly small.

Karl Entacher presents data on inadequate subsequences produced by some commonly used linear
congruential generators [7].

VSL allows you to use any of the above methods, leapfrog and skip-ahead (block-split) methods
deserving special attention.

VSL implements block-splitting through the function vslSkipAheadStream:

vslSkipAheadStream(stream, nskip)

The function changes current state of the stream stream so that with the further call of the generator
the output subsequence would begin with the element xnskip rather than with the current element x0.
Thus, if you wish to split the initial sequence into nstreams blocks of nskip size each, the following
sequence of operations should be implemented:

Option 1
VSLStreamStatePtr stream[nstreams];

int k;

for (k=0; k<nstreams; k++)

{

 vslNewStream(&stream[k], brng, seed);

 vslSkipAheadStream(stream[k], nskip*k);

}

Option 2
VSLStreamStatePtr stream[nstreams];

int k;

vslNewStream(&stream[0], brng, seed);

for (k=0; k<nstreams-1; k++)

{

 vslCopyStream(&stream[k+1], stream[k]);

 vslSkipAheadStream(stream[k+1], nskip);

}

VSL implements the leapfrog method trough the function vslLeapfrogStream:

vslLeapfrogStream(stream, k, nstreams)

The function changes the stream stream so that the further call of the generator would generate the
output subsequence xk, xk+nstreams, xk+2nstreams, ... rather than the output sequence x0, x1, x2,
Thus, if you wish to split the initial sequence into nstreams subsequences, the following sequence of
operations should be implemented:

VSLStreamStatePtr stream[nstreams];

int k;

for (k=0; k<nstreams; k++)

{

 vslNewStream(&stream[k], brng, seed);

 vslLeapfrogStream(stream[k], k, nstreams);

}

Vector Statistical Library Notes

18

Note that two latter splitting methods make programming with vector random number generators
more natural and easy not only in parallel applications but in a sequential programs as well.

Not all VSL BRNGs support both the methods of generating independent subsequences. Leapfrog
(or Skip-Ahead) method is supported only when a BRNG provides a more efficient
implementation than generation of the full sequence to pick out a required subsequence. The
following table specifies which BRNG supports what methods:

BRNG Leapfrog Skip-Ahead
MCG31m1 supported supported

R250 not supported not supported

MRG32k3a not supported supported

MCG59 supported supported

WH supported supported

SOBOL supported to pick out
individual components of

quasi-random vectors

supported

NIEDERREITER supported to pick out
individual components of

quasi-random vectors

supported

Generating Methods for Random Numbers of Non-Uniform
Distribution
You can use a source of uniformly distributed random numbers to generate both discrete and
continuous distributions, which is implemented through a number of methods briefly described
below.

Inverse Transformation
The probability distribution of a one-dimensional variate X may be most generally presented in
terms of cumulative distribution function (CDF):

)Pr()(xXxF ≤= .

Any CDF is defined on the whole real axis and is monotonically increasing, where

1)(;0)(=+∞=−∞ FF .

In the case of continuous distribution the cumulative distribution function F(x) is a continuous one.
In what follows we assume that F(x) is steadily increasing, though assuming a non-steadily
increasing function with a limited number of intervals where it steadily increases leads to trivial
complications and generalizations of what follows.

Assuming the CDF steadily increases, the following single-valued inverse function should exist:

10),(1 ≤≤= − uuFx .

It is easy to prove that, if U is a variate with a uniform distribution on the interval (0, 1), then the
variate X

Vector Statistical Library Notes

19

)()(1 UGUFX ≡= −

is of F(x) distribution. Thus, the inverse transformation method can be implemented as follows:

1. Generate a uniformly distributed random number meeting the requirements: 0 < u < 1.

2. Assume x = G(u) as a random number of the distribution F(x).

The only drawback of this approach is that G(u) in closed form is often hard to find, while
numerical solution to the equation

0)(=− uxF

to calculate x is, as a rule, excessively time consuming.

For discrete distributions the CDF is a step function, the inverse transformation method still being
applicable. For simplicity, let us assume that the distribution has probability mass points
k = 0, 1, 2, … with pk probability. Then the distribution function is the sum

∑
=

=
x

k
kpxF

0

)(,

where)floor(xx = is the maximum integer that does not exceed x. If a continuous function G(u)
exists in closed form so that

,...2,1,0,))((== kkkFG ,

and G(u) is monotone, then generation of random numbers of the distribution F(x) can be
implemented as follows:

1. Generate a uniformly distributed random number meeting the requirements: 0 < u < 1.

2. Assume k = floor(G(u)) as a random number of the distribution F(x).

For example, for the geometric distribution
k

k ppp)1(−⋅= .

Then G(u) does exist, as it easy to prove,

)1ln(
)1ln()(

p
uuG

−
−= .

However, for most cases finding the closed form for G(u) function is too hard. An acceptable
solution may be found using numerical search for k proceeding from

)()1(kFukF ≤<− .

With tabulated values of F(k), the task is reduced to table lookup. As F(k) is a monotonically
increasing function, you may use search algorithms that are considerably more efficient than
exhaustive search. The efficiency is solely dependent on the size of the table.

Inverse transformation method can be applied to the s-dimensional quasi-random vectors. The
resulting quasi-random sequence has the required s-dimensional non-uniform distribution.

Vector Statistical Library Notes

20

Acceptance/Rejection
The cumulative distribution function, let alone the inverse one, is very often much more complex
computationally than the probability density function (for continuous distributions) and the
probability mass function (for discrete distributions).

function massy probabilit)(,)()(

functiondensity y probabilit)(,)()(

0

−=

−=

∑

∫

=

∞−

kpkpxF

xfdttfxF

x

k

x

Therefore, methods based on the use of density (mass) functions are often more efficient than the
inverse transformation method. We will consider a case of continuous probability distribution,
although this technique is just as effective for discrete distributions.

Suppose, we need to generate random numbers x with distribution density f(x). Apart from the
variate X, let us consider the variate Y with the density g(x), which has a fast method of random
number generation and the constant c such that

+∞<<∞−≤ xxcgxf),()(.

Then, it is easy to conclude that the following algorithm provides generation of random numbers x
with the distribution F(x):

1. Generate a random number y with the distribution density g(x).

2. Generate a random number u (independent of y) that is uniformly distributed over the
interval (0, 1).

3. If)(/)(ycgyfu ≤ , accept y as a random number x with the distribution F(x); else go
back to Step 1.

The efficiency of this method greatly depends on degree of complexity of random number
generation with distribution density g(x), computational complexity for the functions f(x) and
g(x), as well as on the constant c value. The closer c is to 1, the lower the necessity to reject the
generated y.

Note: Since quasi-random sequences are non-random, great care should be taken when using
quasi-random basic generators with acceptance/rejection methods.

Mixture of Distributions
Sometimes it may be useful to split the initial distribution into several simpler distributions:

∑
=

=+++=
k

i
ikk pxFpxFpxFpxF

1
2211 1),(...)()()(,

so that random numbers for each of the distributions Fi(x) are easy to generate. Then the
appropriate algorithm may be as follows:

1. Generate a random number i with the probability pi.

2. Generate a random number y (independent of i) with the distribution Fi(x).

3. Accept y as a random number x with the distribution F(x).

Vector Statistical Library Notes

21

This technique is most common in the acceptance/rejection method, when for the whole range of
acceptable x values a density g(x), which would approximate the function f(x) well enough, is
hard to find. In this case the range is divided into sections so that g(x) looks relatively simple in
each of the sub-ranges.

Note: Since quasi-random sequences are non-random, great care should be taken when using
quasi-random basic generators with mixture methods.

Special Properties
The most efficient algorithms, though based on the general methods described in the previous
sections, should, nevertheless, make use of special properties of distributions, if possible. For
example, the inverse transformation method is inapplicable for normal distribution directly.
However, use of polar coordinates for a pair of independent normal variates makes it possible to
develop an efficient method of random number generation based on 2D inverse transformation,
which is known as the Box-Muller method:

212

211

2cos)ln(2

2sin)ln(2

uux

uux

π

π

−=

−=

Generating s-dimensional normally distributed quasi-random sequences with 2D inverse
transformation (VSL name is the Box-Muller2 method), when s is odd, seems to be problematic
because quasi-random numbers are generated in pairs. One of the options is to generate (s+1)-
dimensional normally distributed quasi-random numbers from (s+1)-dimensional quasi-random
numbers produced by a basic quasi-random generator and then ignore the last dimension.

Another option is to use the method that produces one normally distributed number from two
uniform ones (VSL name is the Box-Muller method). In this case to generate s-dimensional
normally distributed quasi-random numbers, use 2s-dimensional quasi-random numbers produced
by a basic quasi-random generator.

For a binomial distribution with parameters m, p, the probability mass function is found as follows:
kmkk

mpm ppCkp −−=)1()(, .

For p > 0.5, it is convenient to make use of the fact that

)()(1,, kmpkp pmpm −= − .

To summarize, we note that a uniform distribution can be converted to a general distribution by a
number of methods. Also, two different transformation techniques implemented for one and the
same uniform distribution produce two different sequences of a general distribution, though
possessing the same statistical properties.

Let us consider a simple example. If U1, U2 are two independent random values uniformly
distributed over the interval (0, 1), that is, with the distribution function F(x) = x , 0 < x < 1, then
the variate X = max(U1, U2) has the distribution F(x) ·F(x). Thus, on the one hand, the random
number x1 with maximum distribution from two independent uniform distributions may be derived
either from a pair of uniformly distributed random numbers u1, u2 as x1 = max(u1, u2) or from
one uniform random number u1 as x1 = sqrt(u1) by applying the inverse transformation method. It
is obvious that applying two different methods to one and the same sequence u1, u2, u3, ... will
give two absolutely different sequences xi.

Vector Statistical Library Notes

22

Transformation into non-uniform distribution sequences may be accomplished in a variety of ways
with no fastest or most accurate method existing, as a rule. The inverse transformation method may
be preferable over the acceptance/rejection method for some applications and architectures, while
reverse preference is common for others. Taking this into account, the VSL interface provides
different options of random number generation for one and the same probability distribution. For
example, a Poisson distribution may be transformed by two different methods: the first, known as
PTPE [20], is based on acceptance/rejection and mixture of distributions techniques, while the
second one is implemented through transformation of normally distributed random numbers. The
method number calls a method for a specified generator, for example:

viRngPoisson(VSL_METHOD_IPOISSON_PTPE, stream, n, r, lambda) – calling PTPE
method by passing the method number VSL_METHOD_IPOISSON_PTPE.

viRngPoisson(VSL_METHOD_IPOISSON_POISNORM, stream, n, r, lambda) – calling
transformation from normally distributed random numbers by passing the method number
VSL_METHOD_IPOISSON_POISNORM.

For details on methods to be used for specific distributions see Continuous Distribution Functions
and Discrete Distribution Functions sections.

Example of VSL Use
A typical algorithm for VSL generators is as follows:

1. Create and initialize stream/streams. Functions vslNewStream, vslNewStreamEx,
vslCopyStream, vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream.

2. Call one or more RNGs.

3. Process the output.

4. Delete the stream/streams. Function vslDeleteStream.

Note: You may reiterate steps 2-3. Random number streams may be generated for different
threads.

The following example demonstrates generation of two random streams. The first of them is the
output of the basic generator MCG31m1 and the second one is the output of the basic generator
R250. The seeds are equal to 1 for each of the streams. The first stream is used to generate 1,000
normally distributed random numbers in blocks of 100 random numbers with parameters a = 5 and
sigma = 2. The second stream is used to produce 1,000 exponentially distributed random numbers
in blocks of 100 random numbers with parameters a = –3 and beta = 2. Delete the streams after
completing the generation. The purpose is to calculate the sample mean for normal and exponential
distributions with the given parameters.

include <stdio.h>

include “mkl.h”

float rn[100], re[100]; /* buffers for random numbers */

float sn, se; /* averages */

VSLStreamStatePtr streamn, streame;

int i, j;

/* Initializing */

sn = 0.0f;

se = 0.0f;

vslNewStream(&streamn, VSL_BRNG_MCG31, 1);

Vector Statistical Library Notes

23

vslNewStream(&streame, VSL_BRNG_R250, 1);

/* Generating */

for (i=0; i<10; i++)

{

 vsRngGaussian(VSL_METHOD_SGAUSSIAN_BOXMULLER2,

 streamn, 100, rn, 5.0f, 2.0f);

 vsRngExponential(VSL_METHOD_SEXPONENTIAL_ICDF,

 streame, 100, re, -3.0f, 4.0f);

 for (j=0; j<100; j++)
 {

 sn += rn[j];

 se += re[j];

 }

}

sn /= 1000.0f;

se /= 1000.0f;

/* Deleting the streams */

vslDeleteStream(&streamn);

vslDeleteStream(&streame);

/* Printing results */

printf(“Sample mean of normal distribution = %f\n”, sn);

printf(“Sample mean of exponential distribution = %f\n”, se);

When you call a generator of random numbers of normal (Gaussian) distribution, use the named
constant VSL_METHOD_SGAUSSIAN_BOXMULLER2 to invoke the Box-Muller2 generation method. In
the case of a generator of exponential distribution assign the method by the named constant
VSL_METHOD_SEXPONENTIAL_ICDF.

The following example generates 100 3-dimensional quasi-random vectors in the 3)3,2(
hypercube using Sobol BRNG.

include <stdio.h>

include “mkl.h”

float r[100][3]; /* buffer for quasi-random numbers */

VSLStreamStatePtr stream;

/* Initializing */

vslNewStream(&stream, VSL_BRNG_SOBOL, 3);

/* Generating */

vsRngUniform(VSL_METHOD_SUNIFORM_STD,

 stream, 100*3, (float*)r, 2.0f, 3.0f);

/* Deleting the streams */

vslDeleteStream(&stream);

Testing of Basic Random Number Generators
Three implementations are available for every basic generator:

• integer implementation (output is a 32-bit integer sequence)

• real (single precision)

Vector Statistical Library Notes

24

• real (double precision).

You can use the basic generator integer output to obtain random bits or groups of bits. However,
when you interpret the output of a generator, you should take into consideration the characteristics
of each basic generator in general and its bit precision in particular. For detailed information on
implementations of each basic generator see Basic Random Generator Properties and Testing
Results.

All VSL basic generators are tested by a number of specially designed empirical tests. These tests
are applied either for floating-point sequences or for integer-valued sequences.

The set of tests for basic generators can be divided into three categories:

• tests to analyze the randomness of bits/groups of bits

• tests to analyze the randomness of real random numbers normalized to the interval (0, 1)

• tests to analyze conformance to the template.

First Category
You can only use the first category tests to evaluate the basic generator integer implementation.
The function viRngUniformBits corresponds to the integer implementation on the interface level.
The testing in this category of tests is made with regard to characteristics of each basic generator
and its bit precision in particular. You can subsequently use the results of the tests to decide if you
can apply this particular basic generator to obtain random bits or groups of bits. A failed test does
not mean that the generator is bad but rather that the interpretation of the integer output as the
stream of random bits may result in an inadequate simulation outcome. Also, this category
includes a set of tests to determine the degree of randomness of upper, medium and lower bits. For
example, upper bits may prove to be much more random than lower. Thus some tests may indicate
which bits or groups of bits are better for use as random ones.

Second Category
The second category contains different tests for basic generator normalized output. You can apply
all these tests for real implementation of both single and double precision. Moreover, in most
cases, the testing results are identical for both implementations, which proves that non-randomness
of lower bits in the original integer sequence does not have practical influence on the randomness
of the real basic generator output normalized to the (0, 1) interval. The functions vsRngUniform
and vdRngUniform, for single and double precision respectively, correspond to real
implementations on the interface level.

Third Category
The third category contains tests to check how a basic generator output conforms to the template.
Template tests variations check if the leapfrog and skip-ahead methods generate subsequences of
random numbers correctly. These tests are particularly important because, if any current member
of the integer sequence differs from the template in a single bit only, the resulting sequence will be
totally different from the template sequence. Also, the statistical properties of such sequence are
worse than those of the template sequence. This assumption is based on the fact that in a variety of
sequences there are a very small number of “sufficiently random” sequences. As Knuth suggests,
“random numbers should not be generated with a method chosen at random” [11]. However,
situations are possible, where the random choice of the method of generation is not a result of
personal preference but rather the curse of a bug.

Vector Statistical Library Notes

25

Interpreting Test Results
Testing of a generator for all possible seeds and sampling sizes is hardly practicable. Therefore we
actually test only a few subsequences of various lengths.

Testing a random number sequence u1, u2, …, un gives a p-value that falls within the range from
0 to 1. Being a function of a random sampling, this p-value is a random number itself. For the
sequence u1, u2, …, un of truly random numbers the resulting p-value is supposed to be uniformly
distributed over the interval (0, 1). Significant p-value deviation from the theoretical uniform
distribution may indicate a defect in the tested sequence. For example, we may consider the
sequence u1, u2, …, un suspicious, if the resulting p-value falls outside the interval (0.01, 0.99).
The chance to reject a ‘good’ sequence in this case is 2%.

Multiple testing of different subsequences of the sequence makes the statistical conclusion about
the sequence randomness more substantiated with several options to arrive at such a conclusion.

One-Level (Threshold) Testing
When we test K subsequences u1, u2, …, un; un+1, un+2, …, u2n; …; u(K-1)n+1, u(K-1)n+2, …,
uKn of the original sequence, we compute p-values p1, p2, …, pK. For a subsequence u(j-1)n+1,
u(j -1)n+2, …, ujn the test j is failed, if the value pj falls outside the interval (pl, ph) ⊂ (0, 1). We
consider the sequence u1, u2, …, uKn suspicious when r or more test iterations failed.

We have conducted threshold testing for the VSL generators with 10 iterations (K=10), the interval
(pl, ph) equal to (0.05, 0.95), and r = 5. The chance to reject a ‘good’ sequence in this case is
0.16349374% ≅ 0.2%.

Two-Level Testing
When we test K subsequences u1, u2, …, un; un+1, un+2, …, u2n; …; u(K-1)n+1, u(K-1)n+2, …,
uKn of the original sequence, we compute p-values p1, p2, …, pK. Since the resulting p-values for
the sequence u1, u2, …, uKn of truly random numbers are supposed to be uniformly distributed
over the interval (0, 1), we may subject those p-values to any uniformity test, thus obtaining p-
value q1 of the second level. After going through this procedure L times we obtain L p-values of
the second level q1, q2, ... , qL that we subject to threshold testing.

We have conducted threshold second level testing for the VSL generators with 10 iterations (L=10)
and applied the Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling statistics to
evaluate p1, p2, …, pK uniformity.

BRNG Tests Description
Most of empirical tests that are used for testing the VSL BRNGs are well documented (for
example, see [16], [21]). Nevertheless, we find it useful to describe them and the testing procedure
in greater detail here since tests may vary as to their applicability and implementation for a
particular basic generator. We also provide figures of merit that are used to decide on passing vs.
failure in one- or two level testing. For ideas underlying such criteria see Interpreting Test Results
section.

Vector Statistical Library Notes

26

3D Spheres Test

Test Purpose
The test uses simulation to evaluate the randomness of the triplets of sequential random numbers
of uniform distribution. The stable response is the volume of the sphere. The radius of the sphere is
equal to the minimal distance between the generated 3D points.

First Level Test

The test generates the vector ui of 12,000 random numbers (i = 0, 1, … , 11999), which are
uniformly distributed in the (0, 1000) interval. The test forms 4,000 triplets of random numbers xk
= (u3k, u3k+1, u3k+2) (k = 0, 1, …, 3999) situated in the cube R = (0, 1000)х(0, 1000)х(0, 1000).
Further, the test calculates dmi n= d(xk, xl) (l ≠ k), where d(x, y) is the Euclidean distance
between x and y. In this case, the volume of the sphere with the dmin radius should have the
distribution close to the exponential one with a = 0, β = 40π parameters. Thus, the distribution of
the p = 1 – exp(–(dmin)3/30) value should be close to the uniform distribution. The p-value is the
result of the first level test.

Second Level Test

The second level test performs the first level test ten times. The p-value pj, j = 1, 2, …, 10 is the
result of each first level test. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistic to the obtained set of pj (j = 1, 2, …, 10). If the resulting p-value is
p<0.05 or p>0.95, the test fails.

Final Result Interpretation
The final result is the FAIL percentage for the failed first level tests. The test performs the second
level test ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application
vsRngUniform applicable

vdRngUniform applicable

viRngUniform not applicable

viRngUniformBits applicable

Note: The test transforms the integer output into the real output within the interval (0, 1) for the
function viRngUniformBits. For detailed information about the normalization of the integer
output see the description of the given basic generator.

Birthday Spacing Test

Test Purpose
The test uses simulation to evaluate the randomness of groups of 24 sequential bits of the integer
output of basic generator. The test analyzes all possible groups of the kind, that is, for example,
from 0 to 23 bit, from 1 to 24 bit, etc.

First Level Test
The first level test selects at random m = 210 “birthdays” from a “year” of n = 224 days. Then the
test computes the spacing between the birthdays for each pair of sequential birthdays. The test then

Vector Statistical Library Notes

27

uses the spacings to determine the K value, that is, the number of pairs of sequential birthdays with
the spacing of more than one day. In this case K should have the distribution close to the Poisson
distribution with the λ = 16 parameter. The first level test determines 200 values of Kj (j = 1, 2, …,
200). To obtain the p-value p, the test applies the chi-square goodness-of-fit test to the determined
values.

The integer output lists different interpretations for each basic generator.

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

The test generates the dates of the birthdays in the following way:

• Selects the bs, bs+1, …, bs+23 bits from the next WS-bit integer of the integer output of
viRngUniformBits.

• Treats the selected bits as a 24-bit integer, that is, the number of the date on which the
next birthday takes place and thus generates a birthday.

• The test performs the steps 1 and 2 m times to generate m birthdays taken that the year
consists of n days. The legitimate values s are different for each base generator (see the
table above): 0 ≤ s ≤ NB – 24.

Second Level Test
The second level test performs the first level test ten times for the fixed s. The test applies the
Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling statistics to the obtained set of
pj (j = 1, 2 , …, 10). If the resulting p-value is p<0.05 or p>0.95, the test fails for the given s.

Final Result Interpretation
The second level test performs ten times for each 0 ≤ s ≤ NB – 24. The test computes the FAILs
percentage for the failed second level tests. The final result is the minimal percentage of the failed
tests FAIL = min(FAIL0, FAIL1, …, FAILNB–24) for 0 ≤ s ≤ NB – 24. The applicable result is the
value of FAIL<50%. Thus, the test determines if it is possible to select 24 random bits from every
element of the integer output of the generator.

• The integer output for the WH generator is the quadruples of the 32-bits values (xi, yi, zi,
wi). In each 32-bit value only the lower 24 bits are significant.

• The second level test performs ten times for the xi element. Then the test computes the
FAILx percentage the failed second level tests.

Vector Statistical Library Notes

28

• The second level test performs ten times for the yi. Then the test computes the FAILy
percentage for the failed second level tests.

• The test performs the same procedure to compute the FAILz and FAILw values.

The final result is the minimal percentage of the failed tests FAIL = min(FAILx , FAILy, FAILz,
FAILw). The acceptable result is the value of FAIL < 50%.

The test determines if it is possible to select 24 random bits from the fixed element x, y, z or w for
each element of the integer output of the generator.

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

Bitstream Test

Test Purpose
The test uses simulation to check if it is possible to interpret the integer output of the basic
generator as a sequence of random bits.

Note: The bit precision of a basic generator defines the sequence of random bits formation. For
example, only 59 lower bits take part in the bit stream formation for the MCG59 generator, and
only 31 lower bits for the MCG31 generator.

First Level Test

The first level test initially forms the sequence of bits b0, b1, b2, … from the integer output of the
basic generator and then forms 20-bit overlapping words w0 = b0 b1…b19 , w1 = b1 b2…b20 , …
from the sequence. From the total number of 2021 formed words the test computes the quantity K
of the missed 20-bit words. For the truly random sequence the K statistic distribution should be
very close to normal with mean a = 141,909 and standard deviation σ = 428. The test denotes the
cumulative function of the normal distribution with these parameters as F(x). The result is that the
distribution of the p-value p = F(K) should be uniform within the interval of (0, 1).

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

Vector Statistical Library Notes

29

The test selects only NB of lower bits from each WS-bit integer to form a bit sequence. The test
selects only NB of lower bits from each of four WS-bit elements for WH generator.

Second Level Test
The second level test performs the first level test 20 times. The result of each first level test is the
p-value pj, j = 1, 2, …, 20. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of pj (j = 1, 2, …, 20). If the resulting p-value is
p<0.05 or p>0.95, the test fails.

Final Result Interpretation
The final result of the test is the FAIL percentage of the failed second level tests. The second level
test performs ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

The lower bits are not random for multiplicative congruential generators where the module is the
power of two (for example, MCG59), thus, the Bitstream Test fails for such generators.

Rank of 31x31 Binary Matrices Test

Test Purpose
The test evaluates the randomness of 31-bit groups of 31 sequential random numbers of the integer
output. The stable response is the rank of the binary matrix composed of the random numbers. The
test performs iterations for all possible 31-bit groups of bits (0–30, 1–31, ...) for the generators
with more than 31 bit precision.

First Level Test

The first level test selects, with s fixed, groups of bits bs, bs+1, …, bs+30 from each element of the
integer output and forms a binary matrix 31x31 in size from these 31 groups. The first level test
composes 40000 of such matrices out of sequential elements of the integer output of the generator.
Then the test computes the number of matrices with the rank of 31, the number of matrices with
the rank of 30, the number of matrices with the rank of 29, and the number of matrices with the
rank less than 29. For the truly random sequence, the probability of composing a 31 rank matrix is
0.289, a 30 rank matrix is 0.578, a 29 rank matrix is 0.128, and a less than 29 rank matrix is 0.005.
Therefore, the test divides all possible matrix ranks into four groups. The test makes a V statistic
with a chi-square distribution with three degrees of freedom for these four groups. Then the first
level test applies the chi-square goodness-of-fit test to the groups. The testing result is the p-value.

Note: The acceptable values of 0 ≤ s ≤ NB – 31 are specific for each basic generator. The test is
not applicable for the basic generator WH.

Vector Statistical Library Notes

30

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

The test selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Second Level Test
The second level test performs the first level test ten times for the fixed s. The result is the set of p-
values pj, j = 1, 2, …, 10 .The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of pj j = 1, 2, …, 10. If the resulting p-value is
p<0.05 or p>0.95, the test fails for the s.

Final Result Interpretation
The second level test performs ten times for each 0 ≤ s ≤ NB – 31. The test computes the FAIL
percentage of the failed second level tests. The final result is the minimal percentage of the failed
tests FAIL = min(FAIL0, FAIL1, …, FAILNB–31) for 0 ≤ s ≤ NB – 31. The acceptable result is the
value of FAIL < 50%. Therefore the test indicates whether it is possible to single out at least 31
random bits out of each element of generator integer output such that 31 random numbers of 31
bits each have a random enough behavior under this particular test.

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

The Rank of 31x31 Binary Matrices Test cannot be applied to the generator WH as each element
of this generator is only 24-bit.

Rank of 32x32 Binary Matrices Test

Test Purpose
The test evaluates the randomness of 32-bit groups of 32 sequential random numbers of the integer
output. The stable response is the rank of the binary matrix composed of the random numbers. The
test performs iterations for all possible 32-bit groups of bits (0–31, 1–32,...) for the generators with
the bit precision of more than 32 bits.

Vector Statistical Library Notes

31

First Level Test

The first level test selects, with s fixed, groups of bits bs, bs+1, …, bs+31 from each element of the
integer output. Then it forms a binary matrix 32x32 in size from these 32 groups. The first level
test composes 40000 of such matrices out of sequential elements of the integer output of the
generator. Then the test computes the number of matrices with the rank of 32, the number of
matrices with the rank of 31, the number of matrices with the rank of 30, and the number of
matrices with the rank less than 30. For the truly random sequence the probability of composing a
30 rank matrix is 0.289, a 31 rank matrix is 0.578, a 30 rank matrix is 0.128, and a less than 30
rank matrix is 0.005. Therefore, the test divides all possible matrix ranks into four groups. The test
makes a V statistics with a chi-square distribution with three degrees of freedom for these three
groups. Then the first level test applies the chi-square goodness-of-fit test to the groups. The
testing result is the p-value.

Note: The acceptable values of 0 ≤ s ≤ NB–32 are specific for each basic generator. The test is not
applicable for basic generators MCG31 and WH.

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

The test selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Second Level Test
The second level test performs the first level test ten times for the fixed s. The result is the set of p-
values pj, j = 1, 2, …, 10 .The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of pj, j = 1, 2, …, 10. If the resulting p-value is
p<0.05 or p>0.95, the test fails for the s.

Final Result Interpretation
The second level test performs ten times for each 0 ≤ s ≤ NB – 32. The test computes the FAIL
percentage of the failed second level tests. The final result is the minimal percentage of the failed
tests FAIL = min(FAIL0, FAIL1, …, FAILNB–32) for 0 ≤ s ≤ NB – 32. The acceptable result is the
value of FAIL < 50%. Therefore the test indicates whether it is possible to single out at least 32
random bits out of each element of generator integer output such that 32 random numbers of 32
bits each have a random enough behavior under this particular test.

Vector Statistical Library Notes

32

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

The Rank of 32x32 Binary Matrices Test cannot be applied to the WH generator as each element
of this generator is only 24-bit.

The Rank of 32x32 Binary Matrices Test cannot be applied to the MCG31generator as each
element of this generator is only 31-bit.

Rank of 6x8 Binary Matrices Test

Test purpose
The test evaluates the randomness of the 8-bit groups of 6 sequential random numbers of the
integer output. The stable response is the rank of the binary matrix composed of the random
numbers. The test checks all possible 8-bit groups: 0-7, 1-8, …

First Level Test

The first level test selects, with s fixed, groups of bits bs, bs+1, …, bs+7 from each element of the
integer output and forms a binary matrix 6x8 in size from these 6 groups. The first level test
composes 100000 of such matrices out of sequential elements of the integer output of the
generator. Then the test computes the number of matrices with the rank of 6, the number of
matrices with the rank of 5, and the number of matrices with the rank less than 5. For the truly
random sequence the probability of composing a 6 rank matrix is 0.773, a 5 rank matrix is 0.217,
and a less than 5 rank matrix is 0.010. Therefore, the test divides all possible matrix ranks into
three groups. The test makes a V statistic with a chi-square distribution with two degrees of
freedom for these three groups. Then the first level test applies the chi-square goodness-of-fit test
to the groups. The testing result is the p-value.

Note: The acceptable values of 0 ≤ s ≤ NB – 8 are specific for each basic generator. The test
checks each of the 4 elements of the integer output for the WH basic generator.

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

The test selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Vector Statistical Library Notes

33

Second Level Test
The second level test performs the first level test ten times for the fixed s. The result is a set of p-
values pj, j = 1, 2, …, 10. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of pj, j = 1, 2, …, 10. If the resulting p-value is
p<0.05 or p>0.95, the test fails for the s.

Final Result Interpretation
The second level test performs ten times for each 0 ≤ s ≤ NB–8. The test computes the FAIL
percentage of the failed second level tests. The final result is the minimal percentage of the failed
tests FAIL = min(FAIL0, FAIL1, …, FAILNB–8) for 0 ≤ s ≤ NB–8. The acceptable result is the value
of FAIL < 50%. Therefore the test indicates whether it is possible to single out at least 8 random
bits out of each element of generator integer output such that six random numbers of eight bits
each have a random enough behavior under this particular test.

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

The Rank of 6x8 Binary Matrices Test checks each element of the WH generator separately as
different multiplicative generators produce its elements.

Count-the-1’s Test (stream of bits)

Test Purpose
The test evaluates the randomness of the overlapping random five-letter words sequence. The five-
letter words have the specified distribution of the probabilities of obtaining the specified letter. The
test forms the random letters from the integer output of the basic generator. The test regards the
integer output as a sequence of bits.

First Level Test
The first level test assumes that the integer output is a sequence of random bits. The test interprets
this bit sequence as a sequence of bytes, that is, a sequence of 8-bit integer numbers. The number
of 1’s in every random byte should have a binominal distribution with m = 8, p = 1/2 parameters.
Therefore, the probability of getting k 1’s in a byte is equal to kC8

82− . The first level test regards a
random variable c that takes five possible values:

c = 0, if the number of 1’s in a random byte is less than three,

c = 1, if the number of 1’s in a random byte is three,

c = 2, if the number of 1’s in a random byte is four,

c = 3, if the number of 1’s in a random byte is five,

c = 4, if the number of 1’s in a random byte is more than five.

The probability distribution of c is the following:

Vector Statistical Library Notes

34

() ()8
8

7
8

6
8

8
4

5
8

8
3

4
8

8
2

3
8

8
1

2
8

1
8

0
8

8
0 2;2;2;2;2 CCCqCqCqCqCCCq ++====++= −−−−− .

The test interprets c as a selection of a random letter from the alphabet {a, b, c, d, e} with the
probabilities 43210 ,,,, qqqqq respectively. Thus, the sequence of random bytes b0, b1, b2, …
corresponds with the defined sequence of random letters l0, l1, l2, … . The test forms overlapping
words of length four: v1 = l1 l2 l3 l4, v2 = l2 l3 l4 l5, … and length five: w1 = l1 l2 l3 l4 l5, w2 = l2
l3 l4 l5 l6, … from this sequence. The test computes the frequencies of getting each of 625 of
possible four-letter words and of 3,125 of possible five-letter words for 2,560,000 of the obtained
words. According to these frequencies, the test makes the chi-square statistics V1 and V2 for the
four- and five-letter words respectively. The test takes into account the covariance of the
frequencies of the fallouts of four-letter and five-letter words and performs the chi-square test for
the V2 –V1 statistic. The V2 –V1 statistic is asymptotically normal with a mean a = 2500 and
standard deviation σ = 70.71. The result of the first level test is the p-value.

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

The test selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Second Level Test
The second level test performs the first level test ten times. The test applies the Kolmogorov-
Smirnov goodness-of-fit test with Anderson-Darling statistics to the obtained p-values of pj, j = 1,
2, …, 10. If the resulting p-value is p < 0.05 or p > 0.95, the test fails.

Final Result Interpretation
The second level test performs ten times. The test computes the FAIL percentage of the failed
second level tests. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

The WH generator uses all the four elements to form a bit sequence.

Vector Statistical Library Notes

35

Count-the-1’s Test (stream of specific bytes)

Test Purpose
The test evaluates the randomness of the overlapping random five-letter words sequence. The five-
letter words have the specified distribution of the probabilities of obtaining the specified letter. The
test forms the random letters from the integer output of the basic generator. The test selects only 8
sequential bits from each element, starting with a certain fixed bit s.

First Level Test
The test selects the ds, ds+1, …, ds+7 bits determining the next random byte from each element of
the integer output, where 0 ≤ s ≤ NB–8 (see the table below). The number of 1’s in every random
byte should have a binominal distribution with m = 8, p = 1/2 parameters. Therefore, the
probability of getting k 1’s in a byte is equal to kC8

82− . The first level test regards a random
number that takes five possible values:
c = 0, if the number of 1’s in a random byte is less than three,
c = 1, if the number of 1’s in a random byte is three,
c = 2, if the number of 1’s in a random byte is four,
c = 3, if the number of 1’s in a random byte is five,
c = 4, if the number of 1’s in a random byte is more than five.

The probability distribution of c is the following:

() ()8
8

7
8

6
8

8
4

5
8

8
3

4
8

8
2

3
8

8
1

2
8

1
8

0
8

8
0 2;2;2;2;2 CCCqCqCqCqCCCq ++====++= −−−−− .

The test interprets c as a selection of a random letter from the alphabet {a, b, c, d, e} with the
respective probabilities 43210 ,,,, qqqqq . Thus, the sequence of random bytes b0, b1, b2, …
corresponds with the defined sequence of random letters l0, l1, l2, … . The test forms overlapping
words of length four: v1 = l1 l2 l3 l4, v2 = l2 l3 l4 l5, … and length five: w1 = l1 l2 l3 l4 l5,
w2 = l2 l3 l4 l5 l6, … from this sequence. The test computes the frequencies of getting each of 625
of possible four-letter words and of 3,125 of possible five-letter words for 256,000 of the obtained
words. According to these frequencies, the test makes the chi-square statistics V1 and V2 for the
four- and five-letter words respectively. The test takes into account the covariance of the
frequencies of the fallouts of four-letter and five-letter words and performs the chi-square test for
the V2 –V1 statistic. The V2 –V1 statistic is asymptotically normal with a mean a = 2500 and
standard distribution σ = 70.71. The result of the first level test is the p-value.

BRNG Integer Output Interpretation
MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:

 0–31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:

 0–58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following

bits: 0–23. NB=24, WS=32.

Vector Statistical Library Notes

36

Second Level Test
The second level test performs the first level test ten times for the fixed 0 ≤ s ≤ NB–8. The test
applies the Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling statistics to the
obtained p-values of pj, j = 1, 2, …, 10. If the resulting p-value is p < 0.05 or p > 0.95, the test fails
for the s.

Final Result Interpretation
The second level test performs ten times for each of 0 ≤ s ≤ NB–8. The test computes the FAIL
percentage of the failed second level tests. The final result is the minimal for 0 ≤ s ≤ NB–8
percentage of the failed tests FAIL = min(FAIL0, FAIL1, …, FAILNB–8). The acceptable result is the
value of FAIL < 50%. Therefore, the test determines whether it is possible to select at least 8
random bits from each element of the integer output of the generator.

Tested Generators

Function Name Application
vsRngUniform not applicable

vdRngUniform not applicable

viRngUniform not applicable

viRngUniformBits applicable

The test checks each of the four elements separately for the WH generator.

Craps Test

Test Purpose
The test evaluates the randomness of the output sequence of random numbers of the uniform
distribution that imitates the process of dice tossing when gambling Craps. The stable response is
the number of tosses of the pair of dice necessary to complete the game and the frequency of wins
in the game.

First Level Test
The test forms a sequence of random numbers equiprobably taking the values from 1 to 6 from the
output sequence of random numbers. The test treats every number as a number of spots on the face
of a die. Thus the test regards a pair of numbers as the result of a toss of two dice. If on the first
throw of dice the sum of the spots on the faces of dice equals to 7 or 11, it is a win; if the sum
equals 2, 3 or 12, it is a loss. In other cases it is necessary to make additional throws to define the
result of the game.

The test performs additional throws until the sum of the spots equals to 7 or coincides with the sum
thrown on the first throw. If the sum equals to 7, it is a loss, otherwise, it is a win.

The theoretical probability of the win is 244/495, that is, a little less than 0.5. Further, the
frequency of wins with the K-multiple repeats of the game, when K = 200,000, has a very close to
normal distribution with mean a = K*244/495 and standard deviation σ = a*251/495.

The number of throws necessary to complete the game can take the 1,2, … values. On K-multiple
iterations of the game, the test computes the frequencies of getting c = 1, c = 2, …, c = 20, c > 20.
Based on these frequencies, the test makes the chi-square statistics V with the chi-square
distribution with 20 degrees of freedom.

Vector Statistical Library Notes

37

The result of the first level test is the pair of p-values p and q for the number of tosses and the
frequency of wins respectively.

Second Level Test
The test performs the first level test ten times. The result of each iteration of the first level test is
the pair of p-values pj and qj, j = 1, 2, …, 10. The test applies the Kolmogorov-Smirnov goodness-
of-fit test with Anderson-Darling statistics to the obtained p-values of pj, j = 1, 2, …, 10. If the
resulting p-value is p < 0.05 or p > 0.95, the test fails. Similarly, the test applies the Kolmogorov-
Smirnov goodness-of-fit test with Anderson-Darling statistics to the obtained p-values of qj, j = 1,
2, …, 10. If the resulting p-value is q < 0.05 or q > 0.95, the s test fails. The test passes in all other
cases.

Final Result Interpretation
The final result of the test is the percentage FAIL of the failed second level tests. The test performs
the second level test ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application
vsRngUniform applicable

vdRngUniform applicable

viRngUniform applicable

viRngUniformBits applicable

Parking Lot Test

Test Purpose
The test evaluates the randomness of two-dimensional random points uniformly distributed in the
square with a side of length 100. The stable response is the number of successfully “parked” points
from the 12,000 random two-dimensional points.

First Level Test
The test assumes a next random point (x, y) successfully “parked”, if it is far enough from every
previous successfully “parked” point. The sufficient distance between the points (x1, y1) and
(x2, y2) is () 1,min 2121 >−− yyxx . Numerous experiments prove that out of 12,000 of truly

random points only 3,523 points park successfully in average. Moreover, the K value of points
successfully parked after 12,000 attempts haves close to normal distribution with mean a = 3,523
and standard deviation σ = 21.9. Consequently, (K–a)/σ should have a close to standard normal
distribution with the)(xΦ cumulative distribution function. The result of the test is the p-value

)/)((σaKp −Φ= .

Second Level Test
The test performs the first level test ten times. The result of each iteration of the first level test is
the p-value pj, j = 1, 2, …, 10. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained p-values of pj, j = 1, 2, …, 10. If the resulting p-value
is p < 0.05 or p > 0.95, the test fails.

Vector Statistical Library Notes

38

Final Result Interpretation
The final result of the test is the percentage FAIL of the failed second level tests. The test performs
the second level test ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application
vsRngUniform applicable

vdRngUniform applicable

viRngUniform not applicable

viRngUniformBits applicable

2D Self-Avoiding Random Walk Test

Test Purpose
The test evaluates the randomness of the output vector of the generator. The stable response is the
frequency of achieving the upper side of the lattice by the point walking randomly along the sites.

First Level Test
A random particle walks along the sites of a square lattice. With each new step, the particle moves
in one of possible directions one step forward cornerwise. A square lattice has two types of sides:
the lower and left-hand sides are totally reflecting, while the upper and right-hand sides are totally
adsorbing. Reaching the lower and left-hand sides, the vector of the movement direction makes a
90-degree bend. The upper and right-hand sides adsorb the particle when it reaches them and the
walking process completes. The particle starts its movement from the lower left-hand site of the
lattice in the northeast direction. If the particle encounters an unvisited site, it changes the direction
vector with a ½ probability clockwise or counter-clockwise by 90 degrees and continues the
walking process. If the particle encounters an already visited site of the lattice, it defines the
movement direction according to the conditions of inadmissibility of re-tracing at least a part оf the
passed path.

Due to the symmetry of the task, either upper or the right-hand side should equiprobably adsorb
the particle. The test determines the frequency of the achievement of the upper side of the lattice
by the result of 500 iterations of the walking process. If M is the number of attempts when the
particle reaches the upper side, then () 500/5002 −= MK has the close to standard normal
distribution)(xΦ . The result of the first level test is the p-value)(Kp Φ= .

Second Level Test
The test performs the first level test ten times. The result of each iteration of the first level test is
the p-value pj, j = 1, 2, …, 10. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained p-values of pj, j = 1, 2, …, 10. If the resulting p-value
is p < 0.05 or p > 0.95, the test fails.

Final Result Interpretation
The final result of the test is the percentage FAIL of the failed second level tests. The test performs
the second level test ten times. The acceptable result is the value of FAIL < 50%.

Vector Statistical Library Notes

39

Tested Generators

Function Name Application
vsRngUniform applicable

vdRngUniform applicable

viRngUniform not applicable

viRngUniformBits applicable

Template Test

Test Purpose
The test evaluates the conformity of the generator output with the template sequence of random
numbers. The test forms the specified output integer sequence ,...,,..., 121 +kk xxxx from the
recurrence specifying initial conditions. The parameters of the recurrences are selected such that
the output sequences possess “good” properties (good multidimensional uniformity, large period,
etc.). If the test computes any member of sequence kx incorrectly, that results in incorrect
computing of the other members ,...1+kx of the sequence. Moreover, if kx differs from the correct
(template) sequence in one bit, the subsequent members of sequence may differ significantly from
the template sequence. In this connection the quality of the obtained sequence is highly probable to
be much worse than the quality of the template sequence. That is why all the basic generators of
the VSL undergo thorough tests for template sequences conformity.

The test also checks the basic generators with the random output numbers ,...,,...,, 121 +kk uuuu ,
uniformly distributed over the),(ba interval for the template output conformity.

Obviously, the output sequences are different for real arithmetic of single and double precision.
Other from the integer output where every member should coincide bitwisely with the template
member, it is not necessary for the real output members. The lower bits of mantissa of the real
output do not influence randomness, these are the upper bits that determine the quality of the
output sequence. For example, the coincidence of the upper binary digits of mantissa is sufficient
enough for most applications. (See the chapter Spectral Test in [11]).

This test is also used to validate VSL basic quasi-random number generators

Final Result Interpretation
The final result is the number of the sequence members that do not coincide with the template
members. The value should be equal to 0.

For real sequences the test assumes that the sequence member coincides with the template
member, if at least 8 upper binary digits of mantissa coincide.

Tested Generators

Function Name Application
vsRngUniform applicable

vdRngUniform applicable

viRngUniform not applicable

viRngUniformBits applicable

Vector Statistical Library Notes

40

Basic Random Generator Properties and Testing Results
This section contains the empirical testing results for the VSL basic generators described in the
BRNG Test Description section and other information on the properties of basic generators and the
rules of the output vector interpretation.

MCG31m1
This is a 31-bit multiplicative congruential generator

12 ,1132489760

)(mod

31

1

−==

=
= −

ma

mxu
maxx

nn

nn

MCG31m1 belongs to linear congruential generators with the period length of approximately 232.
Such generators are still used as default random number generators in various software systems,
mainly due to the simplicity of the portable versions implementation, speed and compatibility with
the earlier systems versions. However, their period length does not meet the requirements for
modern basic generators. Still, the MCG31m1 generator possesses good statistic properties and
you may successfully use it to generate random numbers of different distributions for small
samplings.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 10 uu

Integer Implementation

The output vector of 32-bit integers ,..., 10 xx

Stream Initialization by the Function vslNewStream

MCG31m1 generates the stream and initializes it specifying the input 32-bit parameter seed :

• Assume x0 = seed mod 0x7FFFFFFF

• If x0 = 0, assume x0 = 1.

Stream Initialization by the Function vslNewStreamEx

MCG31m1 generates the stream and initializes it specifying the array n of 32-bit integers
params[]:

• If n = 0, assume x0 = 1

• Otherwise assume x0 = params[0] mod 0x7FFFFFFF

o If x0 = 0, assume x0 = 1.

Subsequences Selection Methods
vslSkipAheadStream supported

vslLeapfrogStream supported

Vector Statistical Library Notes

41

Generator Period
931 101.222 ×≈−=ρ .

Lattice Structure
M8 = 0.72771, M16 = 0.61996, M32 = 0.61996 (for more details see [12]).

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (10% errors) OK (10% errors) N/A OK (10% errors)

Birthday Spacing Test N/A N/A N/A OK (0% errors)

Bitstream Test N/A N/A N/A OK (10% errors)

Rank of 31x31 Binary
Matrices Test

N/A N/A N/A OK (10% errors)

Rank of 32x32 Binary
Matrices Test

N/A N/A N/A N/A

Rank of 6x8 Binary
Matrices Test

N/A N/A N/A OK (0% errors)

Counts-the-1’s Test
(stream of bits)

N/A N/A N/A OK (20% errors)

Counts-the-1’s Test
(stream of specific
bytes)

N/A N/A N/A OK (0% errors)

Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (20% errors)

Parking Lot Test OK (10% errors) OK (10% errors) N/A OK (10% errors)

2D Self-Avoiding
Random Walk Test

OK (20% errors) OK (20% errors) N/A OK (20% errors)

Note:

• N/A means that the test is not applicable to this function.

• The tabulated data is obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in less than 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

• The stream tested is generated by calling the function vslNewStream with
seed=7,777,777.

R250
This is a generalized feedback shift register generator

32
250103

2nn

nnn

xu

xxx

=

⊕= −−

Vector Statistical Library Notes

42

Feedback shift register generators possess ample theoretical foundation and first were intended for
cryptographic and communication applications. The physicists widely use R250 generator, as it is
simple and fast in implementation. However, it fails some types of tests, one of which is the 2D
Self-Avoiding Random Walk Test.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 10 uu

Integer Implementation

The output vector of 32-bit integers ,..., 10 xx

Stream Initialization by the Function vslNewStream

R250 generates the stream and initializes it specifying the input 32-bit integer parameter seed.
The stream condition is the array of 250 32-bit integers 1249250 ,...,, −−− xxx , initialized in the
following way:

• If seed = 0, assume seed = 1. Assume x-250 = seed.

• Initialize 0249 ,..., xx− according to recurrent correlation)2(mod69069 32
1 nn xx =+ .

• Interpret the values 31,...,1,0,2477 =− kx k as a binary matrix of size 32x32 and
perform the following: set the diagonal bits to 1, and the under-diagonal bits to 0.

Stream Initialization by the Function vslNewStreamEx

R250 generates the stream and initializes it specifying the array n of 32-bit integer params[]:

• If n ≥ 0, assume xk-250 = params[k], k=0,1,…,249.

If n = 0, assume seed = 1, and perform the initialization as described in the above section on
stream initialization by the function vslNewStream.

Subsequences Selection Methods
vslSkipAheadStream not supported

vslLeapfrogStream not supported

Generator Period
75250 108.12 ×≈=ρ .

Vector Statistical Library Notes

43

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (0% errors) OK (0% errors) N/A OK (0% errors)

Birthday Spacing Test N/A N/A N/A OK (0% errors)

Bitstream Test N/A N/A N/A OK (25% errors)

Rank of 31x31 Binary
Matrices Test

N/A N/A N/A OK (10% errors)

Rank of 32x32 Binary
Matrices Test

N/A N/A N/A OK (0% errors)

Rank of 6x8 Binary
Matrices Test

N/A N/A N/A OK (0% errors)

Counts-the-1’s Test
(stream of bits)

N/A N/A N/A OK (30% errors)

Counts-the-1’s Test
(stream of specific
bytes)

N/A N/A N/A OK (0% errors)

Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (20% errors)

Parking Lot Test OK (0% errors) OK (0% errors) N/A OK (0% errors)

2D Self-Avoiding
Random Walk Test

FAIL (70% errors) FAIL (80% errors) N/A FAIL (80% errors)

Note:

• N/A means that the test is not applicable to this function.

• The tabulated data is obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in less than 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

• The stream tested is generated by calling the function vslNewStream with
seed=7,777,777.

MRG32k3a
This is a 32-bit combined multiple recursive generator with 2 components of order 3:

228532 ,1370589 ,0 ,527612

2092 ,810728 ,1403580 ,0

)(mod
)(mod

)(mod

32
2232221

32
1131211

1

1

2323222121

1313212111

−=−===

−=−===

=
−=

++=
++=

−−−

−−−

maaa

maaa

mzu
myxz

myayayay
mxaxaxax

nn

nnn

nnnn

nnnn

MRG32k3a combined generator meets the requirements for modern RNGs, such as good
multidimensional uniformity, long period, etc. Optimization for various Intel® architectures makes
it competitive with the other VSL basic generators in terms of speed.

Vector Statistical Library Notes

44

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 10 uu

Integer Implementation

The output vector of 32-bit integers ,..., 10 zz

Stream Initialization by the Function vslNewStream

MRG32k3a generates the stream and initializes it specifying the 32-bit input integer parameter
seed. The stream condition is the two triplets of 32-bit integers (321 ,...,, −−− xxx and

321 ,...,, −−− yyy), initialized in the following way:

• Assume x-3 = seed.

• Assume the other values equal to 1, that is, 112312 ===== −−−−− yyyxx .

Stream Initialization of the Function vslNewStreamEx

MRG32k3a generates the stream and initializes it specifying the array n of 32-bit integer
params[]:

• If n = 0, assume 1123123 ====== −−−−−− yyyxxx .

• If n = 1, assume x-3 = params[0] mod m1, 112312 ===== −−−−− yyyxx .

• If n = 2, assume x-3 = params[0] mod m1, x-2 = params[1] mod m1,
11231 ==== −−−− yyyx .

• If n = 3, assume x-3 = params[0] mod m1, x-2 = params[1] mod m1, x-1 =

params[2] mod m1, 1123 === −−− yyy . If the values prove to be x-3 = x-2 = x-1 = 0,
assume x-3 = 1.

• If n = 4, assume x-3 = params[0] mod m1, x-2 = params[1] mod m1, x-1 =
params[2] mod m1, y-3 = params[3] mod m2, 112 == −− yy . If the values prove
to be x-3 = x-2 = x-1 = 0, assume x-3 = 1.

• If n = 5, assume x-3 = params[0] mod m1, x-2 = params[1] mod m1, x-1 =
params[2] mod m1, y-3 = params[3] mod m2, y-2 = params[4] mod m2,

11 =−y . If the values prove to be x-3 = x-2 = x-1 = 0, assume x-3 = 1.

• If n ≥ 6, assume x-3 = params[0] mod m1, x-2 = params[1] mod m1, x-1 =
params[2] mod m1, y-3 = params[3] mod m2, y-2 = params[4] mod m2, y-1 =
params[5] mod m2. If the values prove to be x-3 = x-2 = x-1 = 0, assume x-3 = 1. If the
values prove to be y-3 = y-2 = y-1 = 0, assume y-3 = 1.

Subsequences Selection Methods
vslSkipAheadStream supported

vslLeapfrogStream not supported

Vector Statistical Library Notes

45

Generator Period
57191 101.32 ×≈≈ρ .

Lattice Structure
M8 = 0.68561, M16 = 0.63940, M32 = 0.63359.

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (10% errors) OK (10% errors) N/A OK (10% errors)

Birthday Spacing Test N/A N/A N/A OK (0% errors)

Bitstream Test N/A N/A N/A OK (20% errors)

Rank of 31x31 Binary
Matrices Test

N/A N/A N/A OK (20% errors)

Rank of 32x32 Binary
Matrices Test

N/A N/A N/A OK (10% errors)

Rank of 6x8 Binary
Matrices Test

N/A N/A N/A OK (0% errors)

Counts-the-1’s Test
(stream of bits)

N/A N/A N/A OK (20% errors)

Counts-the-1’s Test
(stream of specific bytes)

N/A N/A N/A OK (0% errors)

Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (20% errors)

Parking Lot Test OK (10% errors) OK (10% errors) N/A OK (10% errors)

2D Self-Avoiding Random
Walk Test

OK (20% errors) OK (20% errors) N/A OK (20% errors)

Note:

• N/A means that the test is not applicable to this function.

• The tabulated data is obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in less than 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

• The stream tested is generated by calling the function vslNewStream with
seed=7,777,777.

Vector Statistical Library Notes

46

MCG59
This is a 59-bit multiplicative congruential generator

5913

1

2 ,13

)(mod

==

=
= −

ma

mxu
maxx

nn

nn

Multiplicative congruential generator MCG59 is one of the two basic generators implemented in
the NAG Numerical Libraries. As the module of the generator is not prime, the length of its period
is not 259 but only 257, if the initial value (seed) is not an even number. The drawback of these
generators is well known, (see, for example, [6], [7]): the lower bits of the generated sequence of
pseudo-random numbers are not random and thus breaking numbers down into their bit patterns
and using individual bits may cause trouble. Besides, block-splitting an entire period sequence into
2d identical blocks leads to their full identity in d lower bits.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 10 uu

Integer Implementation

The output vector of the 32-bit integers is ,...2/,2mod,2/,2mod 32
1

32
1

32
0

32
0 xxxx

Thus, the output vector stores practically every 59-bit member of the integer output as two 32-bit
integers. For example, to get a vector from n 59-bit integers the size of the output array should be
large enough to store 2n 32-bit numbers.

Stream Initialization by the Function vslNewStream

MCG59 generates the stream and initializes it specifying the 32-bit input integer parameter seed.

• Assume x0 = seed mod 259.

• If x0 = 0, assume x0 = 1.

Stream Initialization of the Function vslNewStreamEx

MCG59 generates the stream and initializes it specifying the array n of 32-bit integer params[]:

• If n = 0, assume x0 = 1.

• If n = 1, assume seed = params[0], follow the instructions described in the above
section on stream initialization by the function vslNewStream.

• Otherwise assume seed = params[0]+232*params[1], follow the instructions
described in the above section on stream initialization by the function vslNewStream.

Subsequences Selection Methods

vslSkipAheadStream supported

vslLeapfrogStream supported

Vector Statistical Library Notes

47

Generator Period
1757 104.12 ×≈≈ρ .

Lattice Structure
S2 = 0.84; S3 = 0.73; S4 = 0.74; S5 = 0.58; S6 = 0.63; S7 = 0.52; S8 = 0.55; S9 = 0.56.

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (10% errors) OK (10% errors) N/A OK (10% errors)

Birthday Spacing Test N/A N/A N/A OK (0% errors)1

Bitstream Test N/A N/A N/A OK (45% errors)

Rank of 31x31 Binary
Matrices Test

N/A N/A N/A OK (0% errors)2

Rank of 32x32 Binary
Matrices Test

N/A N/A N/A OK (0% errors)3

Rank of 6x8 Binary
Matrices Test

N/A N/A N/A OK (0% errors)4

Counts-the-1’s Test
(stream of bits)

N/A N/A N/A FAIL (100% errors)

Counts-the-1’s Test
(stream of specific bytes)

N/A N/A N/A OK (0% errors)5

Craps Test OK (10% errors) OK (10% errors) OK (10% errors) OK (10% errors)

Parking Lot Test OK (20% errors) OK (20% errors) N/A OK (20% errors)

2D Self-Avoiding Random
Walk Test

OK (20% errors) OK (10% errors) N/A OK (10% errors)

Note:

• N/A means that the test is not applicable to this function.

• The tabulated data is obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in less than 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

• The stream tested is generated by calling the function vslNewStream with
seed=7,777,777.

1 The generator fails the test for bit groups 0-23, 1-24, 2-25, 3-26, 5-28.

2 The generator fails the test for bit groups 0-30, 1-31.

3 The generator fails the test for bit groups 0-31, 1-32.

4 The generator fails the test for bit groups 0-7, ..., 9-16, 11-18, 32-39, ..., 37-44, 39-46, ..., 41-48.

5 The generator fails the test for bit groups 0-7, …, 11-18, 13-20, …, 15-22.

Vector Statistical Library Notes

48

WH
This is a set of 273 Wichmann-Hill’s combined multiplicative congruential generators (j = 1, 2, …,
273)

() 1mod
)(mod

)(mod
)(mod

)(mod

,4,3,2,1

,41,4

,31,3

,21,2

,11,1

jnjnjnjnn

jnjn

jnjn

jnjn

jnjn

mwmzmymxu
mwaw

mzaz
myay
mxax

+++=

=

=

=

=

−

−

−

−

WH is a set of 273 different basic generators. This generator is the second basic generator in the
NAG libraries. The constants ai,j range from 112 to 127, the constants mi,j are prime numbers
ranging from 16,718,909 to 16,776,971, close to 224. These constant should show good results in
the spectral test (see Knuth [11] and MacLaren [15]). The period of each Wichmann-Hill generator
may be equal to 292 if not for common factors between (m1,j–1), (m2,j–1), (m3,j–1) and (m4,j–1).
However, each generator should still have a period of at least 280. The generated pseudo-random
sequences are essentially independent of one another according to the spectral test (for detailed
information about properties of these generators see MacLaren [15]).

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 10 uu

Integer Implementation

The output vector of 32-bit integers ...,,,,,,, 11110000 wzyxwzyx

Thus, the output vector stores practically every quadruple (x, y, z, w) of members of the integer
output as four 32-bit integers. For example, to get a vector from n quadruples (x, y, z, w), the size
of the output array should be large enough to for storage of 4n 32-bit numbers.

Stream Initialization by the Function vslNewStream

WH generates the stream and initializes it specifying the 32-bit input integer parameter seed :

• Assume x0 = seed mod m1. If x0 = 0, assume x0 = 1.

• Assume y0 = 1, z0 = 1, w0 = 1.

WH generator is a set of 273 basic generators. The test selects a WH generator adding an offset to
the named constant VSL_BRNG_WH: VSL_BRNG_WH+0, VSL_BRNG_WH+1, ... ,
VSL_BRNG_WH+272. The following example illustrates the initialization of the seventh (of 273) WH
generator:

vslNewStream (&stream, VSL_BRNG_WH+6, seed)

Stream Initialization of the Function vslNewStreamEx

WH generates the stream and initializes it specifying the array n of 32-bit integer params[]:

• If n = 0, assume x0 = 1, y0 = 1, z0 = 1, w0 = 1.

• If n = 1, assume x0 = params[0] mod m1, y0 = 1, z0 = 1, w0 = 1. If x0 = 0, assume x0

=1.

Vector Statistical Library Notes

49

• If n = 2, assume x0 = params[0] mod m1, y0 = params[1] mod m2, z0 = 1, w0 =
1. If x0 = 0, assume x0 = 1. If y0 = 0, assume y0 = 1.

• If n = 3, assume x0 = params[0] mod m1, y0 = params[1] mod m2, z0 =
params[2] mod m3, w0 = 1. If x0 = 0, assume x0 = 1. If y0 = 0, assume y0 = 1. If z0 = 0,
assume z0 = 1.

• If n ≥ 4, assume x0 = params[0] mod m1, y0 = params[1] mod m2, z0=
params[2] mod m3, w0 = params[3] mod m4. If x0 = 0, assume x0 = 1. If y0 = 0,
assume y0 = 1. If z0 = 0, assume z0 = 1. If w0 = 0, assume w0 = 1.

Subsequences Selection Methods
vslSkipAheadStream supported

vslLeapfrogStream supported

Generator Period
2480 102.12 ×≈≥ρ .

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (0% errors) OK (0% errors) N/A OK (0% errors)

Birthday Spacing Test N/A N/A N/A FAIL (60% errors)

Bitstream Test N/A N/A N/A OK (10% errors)

Rank of 31x31 Binary
Matrices Test

N/A N/A N/A N/A

Rank of 32x32 Binary
Matrices Test

N/A N/A N/A N/A

Rank of 6x8 Binary
Matrices Test

N/A N/A N/A OK (0% errors)6

Counts-the-1’s Test
(stream of bits)

N/A N/A N/A OK (10% errors)

Counts-the-1’s Test
(stream of specific bytes)

N/A N/A N/A OK (0% errors)

Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (10% errors)

Parking Lot Test OK (10% errors) OK (10% errors) N/A OK (10% errors)

2D Self-Avoiding Random
Walk Test

OK (10% errors) OK (0% errors) N/A OK (20% errors)

Note:

• N/A means that the test is not applicable to this function.

6 The component y of the generator fails the test for bit group 1-8.

Vector Statistical Library Notes

50

• The tabulated data is obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in less than 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

• The stream tested is generated by calling the function vslNewStream with
seed=7,777,777.

SOBOL
This is a 32-bit Gray code-based quasi-random number generator

cnn vxx ⊕= −1

322nn xu =

Note: The value c is the rightmost zero bit in n-1; nx is s-dimensional vector of 32-bit values. The

s-dimensional vectors (calculated during random stream initialization) 32,1, =iiv are called

direction numbers. The vector nu is the generator output normalized to the unit hypercube s)1,0(.

Bratley and Fox [3] provide an implementation of the Sobol quasi-random number generator. VSL
implementation allows generating Sobol’s low-discrepancy sequences of length up to 232. The
dimension of quasi-random vectors can vary from 1 to 40 inclusive.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 21 uu , where elements

suuu ,...,, 21 correspond to the 1u , sss uuu 2211 ,...,, ++ correspond to the 2u , and so on.

Integer Implementation

The output vector of 32-bit integers ,..., 21 xx , where elements sxxx ,...,, 21 correspond to the

1x , sss xxx 2211 ,...,, ++ correspond to the 2x , and so on.

Stream Initialization by the Function vslNewStream

SOBOL generates the stream and initializes it specifying the input 32-bit parameter seed
(dimension dimen of a quasi-random vector):

• Assume dimen = seed

• If dimen < 1 or dimen > 40, assume dimen = 1.

Stream Initialization by the Function vslNewStreamEx

SOBOL generates the stream and initializes it specifying the array n of 32-bit integers
params[]to set the dimension dimen of a quasi-random vector:

• If n = 0, assume dimen = 1

• Otherwise assume dimen = params[0]

o If dimen < 1 or dimen > 40, assume dimen = 1.

Vector Statistical Library Notes

51

Subsequences Selection Methods
vslSkipAheadStream supported

vslLeapfrogStream supported

Note:

• The skip-ahead method skips individual components of quasi-random vectors rather than
whole s-dimensional vectors. Hence, to skip N s-dimensional quasi-random vectors, call
vslSkipAheadStream subroutine with parameter nskip equal to the N×s.

• The leapfrog method works with individual components of quasi-random vectors rather
than with s-dimensional vectors. In addition, its functionality allows picking out a fixed
quasi-random component only. In other words, nstreams parameter should be equal to
the predefined constant VSL_QRNG_LEAPFROG_COMPONENTS, and k parameter should
indicate the index of a component of s-dimensional quasi-random vectors to be picked out
(0 ≤ k < s).

Generator Period
932 102.42 ×≈=ρ .

Dimensions

401 ≤≤ s .

NIEDERREITER
This is a 32-bit Gray code-based quasi-random number generator

cnn vxx ⊕= −1

322nn xu =

Note: The value c is the rightmost zero bit in n-1; nx is s-dimensional vector of 32-bit values. The

s-dimensional vectors (calculated during random stream initialization) 32,1, =iiv are called

direction numbers. The vector nu is the generator output normalized to the unit hypercube s)1,0(.

According to the results of Bratley, Fox, and Niederreiter [5] Niederreiter sequences have the best
known theoretical asymptotic properties. VSL implementation allows generating Niederreiter low-
discrepancy sequences of length up to 232. The dimension of quasi-random vectors can vary from 1
to 318 inclusive.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values ,..., 21 uu , where elements

suuu ,...,, 21 correspond to the 1u , sss uuu 2211 ,...,, ++ correspond to the 2u , and so on.

Integer Implementation

The output vector of 32-bit integers ,..., 21 xx , where elements sxxx ,...,, 21 correspond to the

1x , sss xxx 2211 ,...,, ++ correspond to the 2x , and so on.

Vector Statistical Library Notes

52

Stream Initialization by the Function vslNewStream

NIEDERREITER generates the stream and initializes it specifying the input 32-bit parameter seed
(dimension dimen of a quasi-random vector):

• Assume dimen = seed

• If dimen < 1 or dimen > 318, assume dimen = 1.

Stream Initialization by the Function vslNewStreamEx

NIEDERREITER generates the stream and initializes it specifying the array n of 32-bit integers
params[]to set the dimension dimen of a quasi-random vector:

• If n = 0, assume dimen = 1

• Otherwise assume dimen = params[0]

o If dimen < 1 or dimen > 318, assume dimen = 1.

Subsequences Selection Methods
vslSkipAheadStream supported

vslLeapfrogStream supported

Note:

• The skip-ahead method skips individual components of quasi-random vectors rather than
whole s-dimensional vectors. Hence, to skip N s-dimensional quasi-random vectors, call
vslSkipAheadStream subroutine with parameter nskip equal to the N×s.

• The leapfrog method works with individual components of quasi-random vectors rather
than with s-dimensional vectors. In addition, its functionality allows picking out a fixed
quasi-random component only. In other words, nstreams parameter should be equal to
the predefined constant VSL_QRNG_LEAPFROG_COMPONENTS, and k parameter should
indicate the index of a component of s-dimensional quasi-random vectors to be picked out
(0 ≤ k < s).

Generator Period
932 102.42 ×≈=ρ .

Dimensions

3181 ≤≤ s .

Testing of Distribution Random Number Generators
VSL generators are tested with a testing suite comprising a set of tests to control the quality of
random number sequences of general discrete and continuous distributions.

Random numbers of discrete and continuous distributions are generated by transforming random
numbers of uniform distribution. A source of uniformly distributed random numbers is a random
stream produced by a basic generator. Quality of the random number sequences with non-uniform
distribution greatly depends on the quality of the respective basic generator. Therefore, generators
of discrete and continuous distributions are tested for each individual basic generator.

Vector Statistical Library Notes

53

VSL can provide several methods of random number generation for any probability distribution.
For example, two methods are implemented for Poisson distribution: PTPE acceptance/rejection
algorithm and PoisNorm inverse transformation algorithm, based on transformation of normal
distribution. The generator is tested for each of the implemented methods.

VSL offers two different implementations for each of continuous distributions:

• single-precision real arithmetic

• double-precision real arithmetic.

Single-precision generator implementation is, as a rule, faster than that for double-precision
implementation. Moreover, single-precision implementation is quite sufficient for most
applications. VSL offers only one implementation for discrete distributions.

Apart from the above-mentioned factors, RNGs are dependent for their quality on distribution
parameters. For example, different transformation techniques may be used for different parameters.
Therefore, generators are also tested for different parameter sets.

Interpreting Test Results
Test results for general distribution generators are interpreted almost in the same way as for basic
generators. For reliable results, either one-level (threshold) or two-level testing is performed.

Description of Distribution Generator Tests

Confidence Test

Test Purpose
The test checks how well each output member corresponds to the valid range of possible values.
For example, for an exponential distribution with parameters a and β all the output members xi
should lie within the range ∞<≤ ixa . A value axi < is impossible, that is, the fact that the
variate X of exponential distribution with parameters a and β acquires a value less than a is an
impossible event (not to be confused with a null event). Any output member lying outside the valid
range constitutes the case of an error.

Such a test is necessary because statistical tests (for example, distribution moments test or chi-
square test) are unable to detect a small number (if compared with the total sample size) of xi
values falling outside the valid range.

Interpreting Final Results
The test gives a certain quantity K of random numbers that lie outside the valid range of values.
The test is considered passed, if K = 0, and failed otherwise.

Distribution Moments Test

Test Purpose
The test verifies that sample moments of a given distribution agree with theoretical moments.
Sample mean (first order moment) and sample variance (central moment of the second order) are
considered as stable response.

Vector Statistical Library Notes

54

First Level Test
The generated random number sequence is used to compute the sample mean M and the sample
variance D that are of an asymptomatically normal distribution. Proceeding from this asymptotic,
p-values Mp and Dp are found using the values of M and D.

Second Level Test

The first level test is run 10 times, each run producing a pair of p-values M
jp and D

jp , j = 1, 2, … ,
10. The Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling’s statistics is applied to
the obtained p-values M

jp , j = 1, 2, … , 10. If the resulting p-value pM < 0.05 or pM > 0.95, the

test is considered failed for the sample mean. The same procedure is performed for p-values D
jp , j

= 1, 2, … , 10, and if p-value pD < 0.05 or pD > 0.95, the test is considered failed for the sample
variance.

Interpreting Final Results
10 runs of the second level test provide the percentage FAILM of failed tests for the sample mean
and the percentage FAILD of failed tests for the sample variance. The final result of the test is the
percentage FAIL = max(FAILM, FAILD). The value of FAIL < 50% is considered acceptable.

Chi-Squared Goodness-of-Fit Test

Test Purpose
The test verifies that the sample distribution function agrees with the hypothesized distribution. A
chi-squared V statistic with the number of degrees of freedom that is minus one from the number
of the intervals of partition is considered a stable response.

First Level Test
For a given parameter set and a given sample size the test computes the partition of the distribution
domain into disjoint intervals so that the a priori quantity of random numbers from each interval is
of order 100.

The test computes the actual number of random values within each interval of the generated
sample and then calculates chi-square of the statistic V. Since V is asymptotically of chi-squared
distribution Fk–1(x) with k – 1 degrees of freedom, where k is the number of the intervals, p-value,
which is equal to Fk–1(V), should be of a distribution that is close to uniform.

Second Level Test

The first level test is run 10 times, each run producing a p-value jp , j = 1, 2, … , 10. The

Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling’s statistics is applied to the
obtained p-values jp , j = 1, 2, … , 10. If the resulting p-value pM < 0.05 or pM > 0.95, the test is

considered failed.

Interpreting Final Results
The final result of the test is the percentage FAIL of failed second level tests. The second level test
is run 10 times. The value of FAIL < 50% is considered acceptable.

Vector Statistical Library Notes

55

Performance
The following factors influence the performance of an RNG of a given distribution:

• architecture and configuration of the hardware and software

• performance of the underlying BRNG

• method of transformation

• number of random numbers to be generated (size of the output vector)

• parameters of a given probability distribution.

VSL random number generators are optimized for Intel® Pentium® 4 processor and Intel®
Itanium® 2 processor. See specific tables at http://www.intel.com/software/products/mkl for
generator performance for each individual processor. For earlier Intel processors VSL generators
are fully functional, yet not specifically optimized.

The value of CPE (Clocks Per Element), which is independent from the processor clock rate, is
selected as a unit of measurement.

For example, if the generator performance is equal to 10 CPE and the processor rate is 1 GHz, then
the generator will produce 108 random numbers per second.

The VSL BRNGs differ from each other in speed, therefore data on performance of general
(discrete and continuous) distribution generators is given separately for each BRNG used as an
underlying generator to produce uniformly distributed random numbers.

Performance of a general distribution generator also depends on a method chosen for transforming
a uniform distribution to a given non-uniform one. This requires specifying the applied
transformation method as well.

The length of a generated vector is another factor influencing the performance of the VSL vector
type generators. Calling generators on short vector lengths may prove highly ineffective. See the
figure for the typical interdependence between the generator performance and the vector length.

The tables of RNG performance provide speed data obtained using the most indicative vector
length of 1000 elements. For other vector lengths the performance of any generator behaves
approximately in the same way as shown in the following graph.

Performance vs. Vector length
vsRngUniform, VSL_METHOD_SUNIFORM_STD

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Vector Length

C
PE

MCG31
R250
MRG32K3A
MCG59
W H
SOBOL
NIEDERR

Performance is measured on
Intel® Pentium® 4 processor

Distribution parameters
a=0, b=1

http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

56

Finally, the generator performance may vary according to probability distribution parameters. The
tables provide performance data only for fixed parameter values (or fixed intervals of parameter
variations). Table footnotes contain parameters with which a given performance is obtained. For
some transformation methods the performance is approximately the same on a wide range of
parameters, such methods being called uniformly fast, while for others the performance may vary
considerably with variation in the distribution parameters, for example, in PTPE method for an
RNG of Poisson distribution. When the latter is the case, graphs of interdependence between the
performance and the distribution parameters are provided.

Continuous Distribution Functions

Uniform (VSL_METHOD_SUNIFORM_STD/
VSL_METHOD_DUNIFORM_STD)
Random number generator of uniform distribution over the real interval [a,b]. You may identify
the underlying BRNG by passing the random stream descriptor stream as a parameter. Then
Uniform function calls real implementation (of single precision for vsRngUniform and of double
precision for vdRngUniform) of this basic generator.

See http://www.intel.com/software/products/mkl for test results summary.

Gaussian (VSL_METHOD_SGAUSSIAN_BOXMULLER /
VSL_METHOD_DGAUSSIAN_BOXMULLER)
Random number generator of normal (Gaussian) distribution with the parameters a and σ. You
may obtain any successive random number x of the standard normal distribution according to the
formula (for details, see [2])

21 2sinln2 uux π−= ,

where u1, u2 are a pair of successive random numbers uniformly distributed over the interval (0, 1).

The normal distribution with the parameters a and σ is transformed to the random number y by
scaling and the shift y = σx+a.

See http://www.intel.com/software/products/mkl for test results summary.

Gaussian (VSL_METHOD_SGAUSSIAN_BOXMULLER2 /
VSL_METHOD_DGAUSSIAN_BOXMULLER2)
Random number generator of normal (Gaussian) distribution with the parameters a and σ. You
may produce a successive pair of the random numbers x1, x2 of the standard normal distribution
according to the formula (for details, see [2])

212

211

2cosln2

2sinln2

uux

uux

π

π

−=

−=

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

57

where u1, u2 are a pair of successive random numbers uniformly distributed over the interval (0, 1).

The normal distribution with the parameters a and σ is transformed to the random number y by
scaling and the shift y = σx+a.

In VSL you can safely call this method even when the random numbers are generated in blocks
with the size aliquant to 2. Consider the following example.

Suppose, you use the method VSL_METHOD_DGAUSSIAN_BOXMULLER2 to generate a pair of random
numbers of the standard normal distribution.

Option 1. Single call of the method VSL_METHOD_DGAUSSIAN_BOXMULLER2 with the vector length
equal to 2:
…

double x[2];

…

vdRngGaussian(VSL_METHOD_DGAUSSIAN_BOXMULLER2, stream, 2, x, 0.0, 1.0);

…

In this case you generate the random numbers x[0], x[1] by the formula

21

21

2cosln2]1[

2sinln2]0[

uux

uux

π

π

−=

−=

Option 2. Double call of the method VSL_METHOD_DGAUSSIAN_BOXMULLER2 with the vector
length equal to 1:
…

double x[2];

…

vdRngGaussian(VSL_METHOD_DGAUSSIAN_BOXMULLER2, stream, 1, &x[0], 0.0, 1.0);

vdRngGaussian(VSL_METHOD_DGAUSSIAN_BOXMULLER2, stream, 1, &x[1], 0.0, 1.0);

…

At the first call of vdRngGaussian you produce the random number x[0] by the formula

21 2sinln2]0[uux π−=

At the second call of vdRngGaussian the vector length, over which you initially called the
function to generate the random stream, is recognized as odd (equal to 1 in this case). Then the
random number x[1] is generated by the formula

21 2cosln2]1[uux π−=

and not by the formula

43 2sinln2]1[uux π−= ,

as it might be supposed.

See http://www.intel.com/software/products/mkl for test results summary.

http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

58

GaussianMV (VSL_METHOD_SGAUSSIANMV_BOXMULLER /
VSL_METHOD_DGAUSSIANMV_BOXMULLER)
Random number generator of d-variate (correlated) normal distribution with the parameters a and
T. You may obtain any successive random vector x according to the formula

aTzx += nn ,

where nz is a d-dimensional vector of random numbers from standard normal distribution, T is a
lower triangular d×d matrix – Cholesky factor of variance-covariance matrix.

Random numbers from standard normal distribution are generated by the method

VSL_METHOD_SGAUSSIAN_BOXMULLER/VSL_METHOD_DGAUSSIAN_BOXMULLER.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

GaussianMV (VSL_METHOD_SGAUSSIANMV_BOXMULLER2 /
VSL_METHOD_DGAUSSIANMV_BOXMULLER2)
Random number generator of d-variate (correlated) normal distribution with the parameters a and
T. You may obtain any successive random vector x according to the formula

aTzx += nn ,

where nz is a d-dimensional vector of random numbers from standard normal distribution, T is a
lower triangular d×d matrix – Cholesky factor of variance-covariance matrix.

Random numbers from standard normal distribution are generated by the method

VSL_METHOD_SGAUSSIAN_BOXMULLER2/VSL_METHOD_DGAUSSIAN_BOXMULLER2.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

Exponential (VSL_METHOD_SEXPONENTIAL_ICDF/
VSL_METHOD_DEXPONENTIAL_ICDF)
Random number generator of the exponential distribution with the parameters a and β . You may
generate any successive random number x of the exponential distribution by the inverse
transformation method from the formula:

aux +−=)ln(β ,

where u is a successive random number of a uniform distribution over the interval (0, 1).

See http://www.intel.com/software/products/mkl for test results summary.

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

59

Laplace (VSL_METHOD_SLAPLACE_ICDF/
VSL_METHOD_DLAPLACE_ICDF)
Random number generator of the Laplace distribution with the parameters a and β . You may
generate any successive random number x of the Laplace distribution by the inverse transformation
method from the formula:

>+
≤+−

=
2/1,)ln(
2/1,)ln(

21

21

uau
uau

x
β
β

,

where u1, u2 is a pair of successive random numbers of a uniform distribution over the interval
(0, 1).

See http://www.intel.com/software/products/mkl for test results summary.

Weibull (VSL_METHOD_SWEIBULL_ICDF/
VSL_METHOD_DWEIBULL_ICDF)
Random number generator of the Weibull distribution with the parameters α , a and β . You may
generate any successive random number x of the Weibull distribution by the inverse
transformation method from the formula

() aux +−= αβ /1)ln(,

where u is a successive random number of a uniform distribution over the interval (0, 1).

See http://www.intel.com/software/products/mkl for test results summary.

Cauchy (VSL_METHOD_SCAUCHY_ICDF/
VSL_METHOD_DCAUCHY_ICDF)
Random number generator of the Cauchy distribution with the parameters a and β . You may
generate any successive random number x of the Cauchy distribution by the inverse transformation
method from the formula

aux += tanβ ,

where u is a successive random number of a uniform distribution over the interval (–π/2, π/2).

See http://www.intel.com/software/products/mkl for test results summary.

Rayleigh (VSL_METHOD_SRAYLEIGH_ICDF/
VSL_METHOD_DRAYLEIGH_ICDF)
Random number generator of the Rayleigh distribution with the parameters a and β . You may
generate any successive random number x of the Rayleigh distribution by the inverse
transformation method from the formula

aux +−= lnβ ,

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

60

where u is a successive random number of a uniform distribution over the interval (0, 1).

See http://www.intel.com/software/products/mkl for test results summary.

Lognormal (VSL_METHOD_SLOGNORMAL_ICDF/
VSL_METHOD_DLOGNORMAL_ICDF)
Random number generator of the lognormal distribution with the parameters a, σ , b and β . You
may generate any successive random number x of the lognormal distribution by the inverse
transformation method from the formula

byx +=)exp(β ,

where y is a successive random number of a normal (Gaussian) distribution with the parameters a
and σ .

The random numbers of the normal distribution are generated using the method
VSL_METHOD_SGAUSSIAN_BOXMULLER2 /
VSL_METHOD_DGAUSSIAN_BOXMULLER2.

See http://www.intel.com/software/products/mkl for test results summary.

Gumbel (VSL_METHOD_SGUMBEL_ICDF/
VSL_METHOD_DGUMBEL_ICDF)
Random number generator of the Gumbel distribution with the parameters a and β . You may
generate any successive random number x of the Gumbel distribution by the inverse
transformation method from the formula

ayx +=)ln(β ,

where y is a successive random number of an exponential distribution with the parameters a=0
and 1=β .

The random numbers of the exponential distribution are generated using the method
VSL_METHOD_SEXPONENTIAL_ICDF/ VSL_METHOD_DEXPONENTIAL_ICDF.

See http://www.intel.com/software/products/mkl for test results summary.

Discrete Distribution Functions

Uniform (VSL_METHOD_IUNIFORM_STD)
Uniform discrete distribution over the integer interval),[ba . You may generate any successive
random number k of the uniform distribution by the formula:

 uk = ,

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

61

where u is a successive random number of a uniform (continuous) distribution over the interval
),[ba and x stands for the operation floor(x) that produces the maximum integer, which

does not exceed x.

See http://www.intel.com/software/products/mkl for test results summary.

UniformBits (VSL_METHOD_IUNIFORMBITS_STD)
Random number generator of uniform distribution that produces an integer (non-normalized to the
interval (0, 1)) sequence. You may identify the underlying BRNG by passing the random stream
descriptor stream as a parameter. Then UniformBits function calls integer implementation of
this basic generator.

Basic generators differ in bit capacity and structure of the integer output, therefore you should
interpret the output integer array of the function viRngUniformBits correctly. The following
table provides rules for interpreting 32-bit integer output r[i] for each VSL basic generator.

BRNG Integer Recurrence Interpretation of 32-bit integer
output array r[i] after calling

viRngUniformBits

MCG31m1

12 ,1132489760

)(mod

31

1

−==

=
= −

ma

mxu
maxx

ii

ii

ixir =][

R250
32

250103

2ii

iii

xu

xxx

=

⊕= −− ixir =][

MRG32k3a

228532 ,1370589 ,0 ,527612

2092 ,810728 ,1403580 ,0

)(mod
)(mod

)(mod

32
2232221

32
1131211

1

1

2323222121

1313212111

−=−===

−=−===

=
−=

++=
++=

−−−

−−−

maaa

maaa

mzu
myxz

myayayay
mxaxaxax

ii

iii

iiii

iiii

izir =][

MCG59
5913

1

2 ,13

)(mod

==

=
= −

ma

mxu
maxx

nn

nn

)(]12[
),(]2[

i

i

xHiir
xLoir

=+
=

WH

() 1mod
)(mod

)(mod
)(mod

)(mod

,4,3,2,1

,41,4

,31,3

,21,2

,11,1

jnjnjnjnn

jnjn

jnjn

jnjn

jnjn

mwmzmymxu
mwaw

mzaz
myay
mxax

+++=
=
=
=
=

−

−

−

−

i

i

i

i

wir
zir
yir

xir

=+
=+
=+

=

]34[
]24[
]14[

]4[

http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

62

SOBOL

cnn vxx ⊕= −1

322nn xu = ,

where

),...,,(2)1(1)1(snnsnsn xxx +−+−=x ,

),...,,(2)1(1)1(snnsnsn uuu +−+−=u

and s is the dimension of quasi-random vector.

ixir =−]1[

NIEDERR

cnn vxx ⊕= −1

322nn xu = ,

where

),...,,(2)1(1)1(snnsnsn xxx +−+−=x ,

),...,,(2)1(1)1(snnsnsn uuu +−+−=u

and s is the dimension of quasi-random vector.

ixir =−]1[

Notes:

•)(xLo means obtaining lower 32 bits of the 64-bit unsigned integer x, that is,
322mod)(xxLo = .

•)(xHi means obtaining upper 32 bits of the 64-bit unsigned integer x, that is,

 322/)(xxHi = .

So, when you generate an integer sequence of n elements, the output array r[i] of the function
viRngUniformBits comprises:

• n elements for the basic generators MCG31m1, R250, MRG32k3a, SOBOL, and
NIEDERR

• 2n elements for the basic generator MCG59

• 4n elements for the basic generator WH.

You may use the integer output, in particular, for fast generation of bit vectors. However, in this
case some bits (or groups of them) may happen to be non-random. For example, lower bits
produced by linear congruential generators are less random than their higher bits. Note that quasi-
random numbers are not random at all. Thoroughly check the integer output bits and bit groups for
randomness before forming bit vectors from r[i] array.

See http://www.intel.com/software/products/mkl for test results summary.

Bernoulli (VSL_METHOD_IBERNOULLI_ICDF)
Bernoulli distribution with the parameter p. You may generate any successive random number k of
the Bernoulli distribution by the formula:

http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

63

>
≤

=
pu
pu

k
,0
,1

,

where u is a successive random number of a uniform distribution over the interval [0, 1).

See http://www.intel.com/software/products/mkl for test results summary.

Geometric (VSL_METHOD_IGEOMETRIC_ICDF)
Geometrical distribution with the parameter p. You may generate any successive random number k
of the geometrical distribution by the formula:

()

−

=
p

uk
1ln
ln

,

where u is a successive random number of a uniform distribution over the interval [0, 1).

See http://www.intel.com/software/products/mkl for test results summary.

Binomial (VSL_METHOD_IBINOMIAL_BTPE)
Binomial distribution with the parameters ntrial and p. If 30)1,min(≥−⋅ ppntrial , random
numbers of the binomial distribution are generated by BTPE method (see [8] for details), otherwise
combination of inverse transformation and table lookup methods is used. BTPE method is a
variation of the acceptance/rejection method that uses linear (on the fractions close to the
distribution mode) and exponential (at the distribution tails) functions as majorizing functions. To
avoid time consuming acceptance/rejection checks, areas with zero probability of rejection are
introduced and squeezing technique is applied.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

Hypergeometric (VSL_METHOD_IHYPERGEOMETRIC_H2PE)
Hypergeometric distribution with the parameters l, s, and m. If 40>− LkM and HL kk < ,
where)2()1,1min()1,1min(++−+⋅+−+= lmlmslsM ,

()),max(),min(,0max mlmslskL −−−= , ()),min(),,min(min slsmlmkH −−= , the
random numbers are generated by H2PE method (see [9] for details), otherwise by the inverse
transformation method in combination with the table lookup method. H2PE method is a variation
of the acceptance/rejection method that uses constant (on the fraction close to the distribution
mode) and exponential (at the distribution tails) functions as majorizing functions. To avoid time
consuming acceptance/rejection checks, squeezing technique is applied.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

64

Poisson (VSL_METHOD_IPOISSON_PTPE)
Poisson distribution with the parameter λ . If 27≥λ , random numbers are generated by PTPE
method (see [20] for details), otherwise combination of inverse transformation and table lookup
methods is used. PTPE method is a variation of the acceptance/rejection method that uses linear
(on the fraction close to the distribution mode) and exponential (at the distribution tails) functions
as majorizing functions. To avoid time consuming acceptance/rejection checks, areas with zero
probability of rejection are introduced and squeezing technique is applied.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

Poisson (VSL_METHOD_IPOISSON_POISNORM)
Poisson distribution with the parameter λ . If 1<λ , the random numbers are generated by
combination of inverse transformation and table lookup methods. Otherwise they are produced
through transformation of the normally distributed random numbers.

The VSL_METHOD_SGAUSSIAN_BOXMULLER2 method is used to generate random numbers
of normal distribution.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

PoissonV (VSL_METHOD_IPOISSONV_POISNORM)
Poisson distribution with the parameter λ . If 0625.0<λ , the random numbers are generated by
inverse transformation method. Otherwise they are produced through transformation of normally
distributed random numbers.

The VSL_METHOD_SGAUSSIAN_BOXMULLER2 method is used to generate random numbers
of normal distribution.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

NegBinomial (VSL_METHOD_INEGBINOMIAL_NBAR)
Negative binomial distribution with the parameters a and p. If 100/)1)(1(≥−− ppa , the
random numbers are generated by NBAR method, otherwise by combination of inverse
transformation and table lookup methods. NBAR method is a variation of the acceptance/rejection
method that uses constant and linear functions (on the fraction close to the distribution mode) and
exponential functions (at the distribution tails) as majorizing functions. To ensure that the
majorizing functions are close to the normalized probability mass function, five 2D figures are
formed from the majorizing and minorizing functions as well as from other auxiliary curves. To
avoid time-consuming acceptance/rejection checks, areas with zero probability of rejection are
introduced.

See http://www.intel.com/software/products/mkl for test results summary and performance
graphs.

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Vector Statistical Library Notes

65

 Bibliography
[1] Antonov, I.A., and Saleev, V.M. An economic method of computing LPτ-sequences. USSR Comput.

Math. Math. Phys., 19, 252–256, 1979.

[2] Box, G. E. P. and Muller, M. E. A Note on the Generation of Random Normal Deviates. Ann. Math. Stat.
28, 610-611, 1958.

[3] Bratley, P., Fox, B.L., and Schrage, L.E.. A Guide to Simulation, 2nd Edition, Springer-Verlag, New
York, 1987.

[4] Bratley, P. and Fox, B.L. ALGORITHM 659: Implementing Sobol’s Quasirandom Sequence Generator.
ACM Transactions on Modeling and Computer Simulation, Vol. 14, No. 1, 88–100, March 1988.

[5] Bratley, P., Fox, B.L., and Niederreiter, H. Implementation and Tests of Low-Discrepancy Sequences.
ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 3, 195–213, July 1992.

[6] Cramer, H. Mathematical Methods of Statistics. Cambridge, 1946.

[7] Entacher, Karl. Bad Subsequences of Well-Known Linear Congruential Pseudorandom Number
Generators. ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, 61–70, January
1998.

[8] Kachitvichyanukul, V. and Schmeiser, B.W. Binomial random variate generation. Communications of the
ACM, Volume 31, Issue 2, February 1988.

[9] Kachitvichyanukul, V. and Schmeiser, B.W. Computer generation of hypergeometric random variates. J.
Stat. Comput. Simul. 22, 1, 127-145, 1985.

[10] Kirkpatrick, S., and E. Stoll. A Very Fast Shift-Register Sequence Random Number Generator. Journal of
Computational Physics, V. 40, 517–526, 1981.

[11] Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 2nd edition,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.

[12] L’Ecuyer, Pierre. Uniform Random Number Generators, Annals of Operations Research, 53, 77-120,
1994.

[13] L'Ecuyer, P. Good Parameter Sets for Combined Multiple Recursive Random Number Generators.
Operations Research, 47, 1, 159–164, 1999.

[14] L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure.
Mathematics of Computation, 68, 249–260, 1999.

[15] MacLaren, N.M. The Generation of Multiple Independent Sequences of Pseudorandom Numbers. Applied
Statistics, 38, 351–359, 1989.

[16] Marsaglia, G. The Marsaglia Random Number CDROM, including the DIEHARD Battery of Tests of
Randomness, Department of Statistics, Florida State University, Tallahassee, Florida, 1995.

[17] Mikhailov, G.A. Weight Monte Carlo Methods, Novosibirsk: SB RAS Publ., 2000 (In Russian).

[18] Numerical Algorithms Group, www.nag.co.uk.

[19] Ripley, B.D. Stochastic Simulation, Wiley, New York, 1987.

[20] Schmeiser, Bruce, and Kachitvichyanukul, Voratas. Poisson Random Variate Generation. Research
Memorandum 81–4, School of Industrial Engineering, Purdue University, 1981.

[21] Ziff, Robert M. Four-tap shift-register-sequence random-number generators. Computers in Physics, Vol.
12, No. 4, Jul/Aug 1998.

www.nag.co.uk

	Vector Statistical Library Notes
	Legal Information
	Contents
	About This Library
	About This Document
	Introduction
	Randomness and Scientific Experiment
	Random Numbers
	Figures of Merit for Random Number Generators
	Uniform Probability Distribution and Basic Pseudo- and Quasi- Random Number Generators
	Figures of Merit for General (Non-Uniform) Distribution Generators

	VSL Structure
	Why Vector Type Generators?
	Basic Generators
	Random Streams and RNGs in Parallel Computation
	Initializing Basic Generator
	Creating and Initializing Random Streams
	Creating Random Stream Copy and Copying Stream State
	Independent Streams. Leapfrogging and Block-Splitting

	Generating Methods for Random Numbers of Non-Uniform Distribution
	Inverse Transformation
	Acceptance/Rejection
	Mixture of Distributions
	Special Properties

	Example of VSL Use

	Testing of Basic Random Number Generators
	Interpreting Test Results
	One-Level (Threshold) Testing
	Two-Level Testing

	BRNG Tests Description
	3D Spheres Test
	Birthday Spacing Test
	Bitstream Test
	Rank of 31x31 Binary Matrices Test
	Rank of 32x32 Binary Matrices Test
	Rank of 6x8 Binary Matrices Test
	Count-the-1’s Test (stream of bits)
	Count-the-1’s Test (stream of specific bytes)
	Craps Test
	Parking Lot Test
	2D Self-Avoiding Random Walk Test
	Template Test

	Basic Random Generator Properties and Testing Results
	MCG31m1
	R250
	MRG32k3a
	MCG59
	WH
	SOBOL
	NIEDERREITER

	Testing of Distribution Random Number Generators
	Interpreting Test Results
	Description of Distribution Generator Tests
	Confidence Test
	Distribution Moments Test
	Chi-Squared Goodness-of-Fit Test
	Performance

	Continuous Distribution Functions
	Uniform
	Gaussian
	GaussianMV
	Exponential
	Laplace
	Weibull
	Cauchy
	Rayleigh
	Lognormal
	Gumbel

	Discrete Distribution Functions
	Uniform
	UniformBits
	Bernoulli
	Geometric
	Binomial
	Hypergeometric
	Poisson
	PoissonV
	NegBinomial

	Bibliography

